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Task

Predict the “speediness”

 Predict the “speediness” of
moving objects in videos

 Whether the video Is playing
natrually, or faster / slower?

* Requires high-level reasoning:

* [he ability to correctly classify an
object’s speed continues to improve
even throughout adolescence
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Task

Speediness != motion magnitude
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Task

Formulation

* Binary classification: 1x / 2x

* Input: L frames from an L-fps video

 Output: 1 second or 2 seconds (i.e.,
normal speed or sped-up).



Method

Data, supervision, and avoiding artificial cues

* Self-supervised: Generating normal and faster segments
* Training dataset: Kinetics

e Network: S3D-G

® Avoid the tendency to use shortcuts—artificial cues present in the training data:
* Spatial augmentations: 64x64 ~ 336x336
 Temporal augmentations: 1x ~1.2x / 1.7x ~ 2.2x

 Same-batch training: segment pair from the same source video in the same batch



Application

Adaptive video speedup:

* Non-uniformly change the speed of a video based on its content without corrupting its
“naturalness”

e For a test video:

 Run the model on the video sped-up with a set of different factors.

e V(t): the maximum speedup factor at each time that was still classified as ‘normal’

 Optimizing for adaptive speedup: S: Output speed

arg minS Espeed(S ) V) + /B Erate(S 9 Ro) + OfEsmooth(S ,) RO: User-gesired speed

S’: First derivative of S



Application

Adaptive video speedup:
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Figure 5. Adaptive video speedup. We apply the SpeedNet model for generating time-varying, adaptive speedup videos, based on the
frames’ speediness curve (Sec. 4). Here we show the speediness curve and our resulting adaptive speedup factor for a video of two kids
jumping into a pool. Several selected frames are shown at the top, pointing to their corresponding times within the sequence on the

predicted speediness curve.



Application

Adaptive video speedup:




Experiment

Binary classification accuracy

Batch

Yes
No
No
No

Model Type
Temporal  Spatial
Yes Yes
Yes Yes

No Yes

No No
Mean Flow

Accuracy
Kinetics NFS
75.6% 73.6%
88.2% 59.3%
90.0% 37.7%
96.9% 57.4%
55.8% 55.0%

Training data: Kinetics training set

Testing data: Kinetics test set & NFS

Speediness

motion magnitude



Experiment

Adaptive speedup of real-world videos (See demo)

100m 61.5% 38.5%
Pool 77.8% 22.2%

High Jump 70.4% 29.6%

Dancing 81.5% 18.5%

Floor is Lava
I Adaptive speedup (ours) [ Constant speedup [ ]Can’t tell. They look the same

Figure 6. Adaptive video speedup user study. We asked 30 par-
ticipants to compare our adaptive speedup results with constant
uniform speedup for 5 videos (without saying which 1s which),
and select the one they liked better. Our adaptive speedup results
were consistently (and clearly) preferred over uniform speedup.



Experiment

Self-supervised action recognition

Initialization Supervised accuracy

Method Architecture UCF101 HMDBS1
Random i1nit S3D-G 73.8 46.4
ImageNet inflated S3D-G 86.6 57.7
Kinetics supervised S3D-G 96.8 74.5
CubicPuzzle [19] 3D-ResNetl8 65.8 33.7
Order [40] R(2+1)D 72.4 30.9
DPC [13] 3D-ResNet34 75.7 35.7
AoT [38] T-CAM 79.4 -
SpeedNet (Ours) S3D-G 31.1 48.8
Random i1nit 13D 47.9 29.6
SpeedNet (Ours) I3D 66.7 43.7

Self-Supervised on Kinetics
Then fine-tuned



Conclusion and comments

* Learn the “speediness” of moving objects in videos
o Self-supervised learning
» Effective for several tasks

* Novel task
o Useful application
e Simple method



