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Motivation

* To Improve adversarial robustness: adversarial training

* Trade-off between adversarial robustness and generalization

* To address such a trade-off: leveraging the redundant capacity for robustness
* Do adversarially trained models have such redundant capacity?

* How to leverage it to improve the generalization and OOD robustness while maintaining
adversarial robustness?



Method

AT Models: BAT

Robust-critical module

AT Models: 047

Best FT Models: 05y

Step 1: Step 2: Step 3: Finding the best interpolation
Module robust criticality Fine-tuning on Mitigating robustness- factor & which maximize the
characterization. generalization trade-off increase of generalization

via interpolation. while preserving robustness.



* Adversarial training (AT):

robust loss

arg min R(f(0),D), where
0

R(f(6),D)= >  max L(f(6,z+ Az),y).

AxeS
(z,y)€D

worst-case input perturbation



* How to character the redundant capacity for robustness?

* For a module i

Robust-critical module

(4) _
MRC(f,0",D,¢) = max R(f(0 + A6),D)

—R(f(9),D)

AT Models: 0,47

where

U A9 = {0,...,0,A0% 0,...,0}

Co ={A0|[|AB], < €| 0W]|,}

Step 1:
Module robust criticality
characterization.



Step 1: Module robust criticality characterization

Robust-critical module

AT Models: 0,47

* Choose the module with lowest MRC value:

6 = () where i = arg min MRC(f, 0" D, €)

Step 1:
Module robust criticality
characterization.



AT Models: 041

Robust-critical module

AT Models: 0,47

Best FT Models: Oy

Step 1: Step 2: Step 3: Finding the best interpolation

Module robust criticality Fine-tuning on Mitigating robustness- factor " which maximize the
characterization. generalization trade-off increase of generalization

via interpolation. while preserving robustness.

Step 2: Fine-tuning on non-robust-critical modules 0

argmin  »  L(f(z,(0;0\6)),y) + ]|z



AT Models: 041

Robust-critical module

AT Models: 0,47

Best FT Models: 01

Step 1: Step 2: Step 3: Finding the best interpolation

Module robust criticality Fine-tuning on Mitigating robustness- factor " which maximize the
characterization. generalization trade-off increase of generalization

via interpolation. while preserving robustness.

Step 3: Mitigating robustness-generalization trade-off via interpolation

0, = (1—a)far +abBpr

0% = 0, if it reaches best standard test acc while preserve the robustness as 6 4.



Experiments

* Network Architecture
* ResNetl8
* ResNet34
« WRN34-10

* Dataset
* CIFAR10
* CIFAR100
* Tiny-ImageNet

* Test metric
o Std
* OOD (Using Noise, Blur, - to obtain out-of-distribution images)
* Adv



Architecture ~ Method CIFARIO CIFAR100 Tiny-ImageNet
Std O0OD  Adyv Std OOD  Adv Std OOD  Adv
AT 81.46 73.56 53.63 57.10 4643 30.15 49.10 27.68 23.28
ResNet18 AT+RiIFT 83.44 75.69 53.65 58.74 48.06 30.17 50.61 28.73 23.34
A +1.98 +2.13 +0.02 +1.64 +1.63 +0.02 +1.51 +1.05 +0.06
AT 84.23 75.37 5531 58.67 4824 3050 5096 2791 24.27
ResNet34 AT+RiFT 8541 77.15 55.34 60.88 49.97 30.58 52.54 30.07 24.37
A +1.18 +1.78 +0.03 +2.21 +1.73 +0.08 +1.58 +2.16 +0.10
AT 87.41 7875 5540 6235 50.61 31.66 5278 31.81 26.07
WRN34-10 AT+RiFT 87.89 79.31 5541 64.56 52.69 31.64 55.31 33.86 26.17
A +0.48 +0.56 +0.01 +2.21 +2.08 -0.02 +2.53 +2.05 +0.10
Avg A +1.21 +149 +0.02 +2.02 +1.81 +0.02 +1.87 +1.75 +0.08




Method Std O0OD Adv
All layers 83.56 75.48 52.66
Last layer 83.35 75.16 52.75
Robust-critical 83.36 75.42 5248
Non-robust-critical 83.44 75.69 53.65

Method  Std OOD Adv
Topl 8344 75.69 53.65
Top2 8341 75.61 5247
Top3 8359 75.77 52.22
TopS5S 8370 75.82 52.35




summary

* Leveraging the concept of module robust criticality (MRC) to guide the fine-tuning process,
which leads to improved generalization and OOD robustness

+ A good way to select the module to fine-tune
+ Good performances on Std, OOD, and Adv

 Unknow effect of different network architectures like transformers
* Unknow effect of a single fine-tune without adversarial training
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o Deep neural networks are susceptible to adversarial examples, T B2 MEEhL
W [l tl N g posing a significant security risk in critical applications.



W [ | tl N g Adversarial

Training (A1) is a well-established technique to enhance adversarial
robustness, but it often comes at the cost of decreased generalization
ability.
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Writing

This paper proposes Robustness Critical Fine-Tuning (RiFT), s N
a novel approach to enhance generalization without compromising E i BITE AR
UARE

adversarial robustness.



Writing

The core idea of RiFT is to exploit the
redundant capacity for robustness by fine-tuning the adversarially
trained model on its non-robust-critical module. To do so, we
introduce module robust criticality (MRC), a measure that evaluates
the significance of a given module to model robustness under worst-
case weight perturbations. Using this measure, we identify the
module with the lowest MRC value as the non-robust-critical module
and fine-tune its weights to obtain fine-tuned weights. Subsequently,
we linearly interpolate between the adversarially trained weights
and fine-tuned weights to derive the optimal fine-tuned model
weights.
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Writing

We demonstrate the efficacy of RiFT on ResNetlS, &) — A SLIR B +—1)
ResNet34, and WideResNet34-10 models trained on CIFARIO, TSR
CIFARI00, and Tiny-ImageNet datasets. Our experiments show that
RiFT can significantly improve both generalization and out-of-
distribution robustness by around 1.5% while maintaining or even
slightly enhancing adversarial robustness.



Writing

Deep neural networks are susceptible to adversarial examples,
posing a significant security risk in critical applications. Adversarial
Training (A1) is a well-established technique to enhance adversarial
robustness, but it often comes at the cost of decreased generalization
ability. This paper proposes Robustness Critical Fine-Tuning (RiFT),
a novel approach to enhance generalization without compromising
adversarial robustness. The core idea of RiFT is to exploit the
redundant capacity for robustness by fine-tuning the adversarially
trained model on its non-robust-critical module. To do so, we
introduce module robust criticality (MRC), a measure that evaluates
the significance of a given module to model robustness under worst-
case weight perturbations. Using this measure, we identify the
module with the lowest MRC value as the non-robust-critical module
and fine-tune its weights to obtain fine-tuned weights. Subsequently,
we linearly interpolate between the adversarially trained weights
and fine-tuned weights to derive the optimal fine-tuned model
weights. We demonstrate the efficacy of RiFT on ResNetlS§,
ResNet34, and WideResNet34-10 models trained on CIFARIO,
CIFARI00, and Tiny-ImageNet datasets. Our experiments show that
RiFT can significantly improve both generalization and out-of-
distribution robustness by around 1.5% while maintaining or even
sliohily enhancing adversarial robusiness. Code is available at
https.//github.com/Immortalise/RiFT.
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The pursuit of accurate and trustworthy artificial
intelligence systems is a fundamental objective in the deep
learning community. Adversarial examples [45, 15], which
perturbs input by a small, human imperceptible noise that
can cause deep neural networks to make incorrect
predictions, pose a significant threat to the security of Al
systems. Notable experimental and theoretical progress has
been made in defending against such adversarial examples
[6, 4, 10, 19, 11, 16, 37]. Among various defense methods
[52, 33, 57, 31, 8], adversarial training (AT) [29] has been
shown to be one of the most promising approaches [4, 11]
to enhance the adversarial robustness.
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However, compared
to standard training, AT severely sacrifices generalization
on in-distribution data [42, 46, 58, 36, 32] and is
exceptionally vulnerable to certain out-of-distribution
(OOD) exam ples [14, 53, 22] such as Contrast, Bright and
Fog, resulting in unsatisfactory performance.
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Prior studies tend to mitigate the trade-off between gen-
eralization and adversarial robustness within the adversarial
training procedure. For example, some approaches have
explored reweighting instances [59], using unlabeled data
[36], or redefining the robust loss function [58, 48, 50, 32].
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In this paper, we take a different perspective to address such
a trade-off by leveraging the redundant capacity for
robustness of neural networks after adversarial training.
Recent research has demonstrated that deep neural networks
can exhibit redundant capacity for generalization due to their
complex and opaque nature, where specific network
modules can be deleted, permuted [47], or reset to their
initial values [55, 9] with only minor degradation in
generalization performance.
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Hence, it is intuitive to ask: Do IR A Nideat] gEE ImAY o) X,
adversarially trained models have such redundant capacity? 5|H T —BREAEITTENN A

If so, how to leverage it to improve the generalization and
OOD robustness while maintaining adversarial robustness?



o Based on such motivation, we introduce a new concept called Module OxizEr—B Bk
\/\/r|t| N g Robust Criticality (MRC) 2 to investigate the redundant capacity of NBAT T % o

adversarially trained models for robustness. MRC aims to quantify the

maximum increase of robustness loss of a module’s parameters under the

constrained weight perturbation. As illustrated in Figure 3, we

empirically find that certain modules exhibit redundant characteristics

under such perturbations, resulting in negligible drops in adversarial

robustness. We refer to the modules with the lowest MRC value as the [% | —EX Ay o)
non-robustcritical modules. These findings further inspire us to propose

a novel fine-tuning technique called Robust Critical Fine-Tuning (RiFT),

which aims to leverage the redundant capacity of the non-robust-critical

module to improve generalization while maintaining adversarial

robustness. RiFT consists of three steps: (1) Module robust criticality

characterization, which calculates the MRC value for each module and

identifies the non-robust-critical module. (2) Nonrobust-critical module

fine-tuning, which exploits the redundant capacity of the non-robust-

critical module via finetuning its weights with standard examples. (3)

Mitigating robustness-generalization trade-off via interpolation, which

interpolates between adversarially trained parameters and fine-tuned

parameters to find the best weights that maximize the improvement in

generalization while preserving adversarial robustness.




Experimental results demonstrate that RiFT significantly improves both

. the generalization performance and OOD robustness by around 2% while g Asnsraast 3
W t O . . . . NRRGER, FF
111N g maintaining or even improving the adversarial r.obustness of the OI'lglI.lal NBEMHINE
models. Furthermore, we also incorporate RiFT to other adversarial
training regimes such as TRADES [58], MART [48], AT-AWP [50], and
SCORE [32], and show that such incorporation leads to further
enhancements



Writing

More importantly, our experiments reveal several insights.
First, we found that fine-tuning on non-robust-critical modules can
effectively mitigate the trade-off between adversarial robustness and
generalization, showing that these two can both be improved (Section
5.3). As illustrated in Figure 1, adversarial robustness increases alongside
the generalization in the initial interpolation procedure, indicating that the
features learned by fine-tuning can benefit both generalization and
adversarial robustness. This contradicts the previous claim [46] that the
features learned by optimal standard and robust classifiers are
fundamentally different. Second, the existence of non-robust-critical
modules suggests that current adversarial training regimes do not fully
utilize the capacity of DNNs (Section 5.2). This motivates future work to
design more efficient adversarial training approaches using such capacity.
Third, while previous study [25] reported that fine-tuning on pre-train
models could distort the learned robust features and result in poor
performance on OOD samples, we find that fine-tuning adversarially

trained models do NOT lead to worse OOD performance (Section 5.3).
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The contribution of this work 1s summarized as follows:

1. We propose the concept of module robust criticality and
verify the existence of redundant capacity for robustness in
adversarially trained models. We then propose RiFT to
exploit such redundancy to improve the generalization of
AT models.

2. Our approach improves both generalization and OOD
robustness of AT models. It can also be incorporated with
previous AT methods to mitigate the trade-off between
generalization and adversarial robustness.

3. The findings of our experiments shed light on the
intricate interplay between generalization, adversarial
robustness, and OOD robustness. Our work emphasizes the
potential of leveraging the redundant capacity in AT
models to improve generalization and robustness further,
which may motivate more effective adversarial training
methods.
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