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Background

* WSAL methods:
* Top-down: learns a video-level classifier and then obtains frame attention by checking the produced temporal class
activation map;
* Bottom-up: temporal attention is directly predicted from raw data. Attention is optimized in the task of video

classification with video-level supervision.
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Motivation

Above methods result in the action-context confusion issue: context frames near action clips tend to be recognized as
action frames themselves, since they are closely related to the specific classes.
With the observation that the context exhibits notable difference from the action at representation level, a probabilistic

model, i.e., conditional VAE, is learned to model the likelihood of each frame given the attention.

lllllllllllllllllllIIIIIIIIIIIIIIIIIIIII
Preparing | Approaching Jumping Landing Finishing
(context) (stage 1) (stage 2) (stage 3) (context)




Method

* Feature: X = (x)T_;, x € R%

* Video-level label: y € {0, 1, 2, ..., C}, C is the number of classes and 0 corresponds to background

* Attention: 1 = (A)1_,
* In attention-based action localization problem, the target is to predict the frame attention, which is equivalent to solving

the maximum a posteriori (MAP) problem:

max log p(A|X, 1
Jnax gp(A[X, y)

log p(AIX, y) = log p(X, y|A) + log p(A) — log p(X, y)
= log p(y|X, A) + log p(X|A) + log p(A)
—log p(X, y)
x log p(y|X, A) + log p(X|A)

* By discarding the constant term, the optimization problem becomes:

max logp y| X, A) + log p(X|A)
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Method

Alél[(ii:‘i] Uc,p(.y\ ) + U%P( ‘ )

* The first term logp(y|X, 1) prefers A with high discriminative capacity for action classification, which is the main

optimization target in previous works.

* The second term log p(X|A) forces the representation of frames to be accurately predicted from the attention A, this

objective encourages the model to impose different attentions on different features.



Architecture

Discriminative Attention Modeling: learn the frame attention by optimizing the video-level recognition task.

Generative Attention Modeling: generate the representation based on the attention.
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Discriminative Attention Modeling

Video-level foreground feature: utilize attention A as weight to perform temporal average pooling over all frames in the

video.
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Video-level background feature: utilize attention 1 — A as weight to perform temporal average pooling over all frames

in the video. T

Discriminative loss: encourage high discriminative capability of the foreground feature and simultaneously punish any

discriminative capability of the background feature.

Li=Lig+a-Lyg =—logpe(y|xsy)—c-1logpe(0|xpg)



VAE

Variational Auto-Encoder: learn the mapping between probability distributions.

Loss function: Jvae = —K L(qs(2|x)|[pe(2)) + Eq, 21x) [log py (x]2)].
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CVAE

Conditional Variational Auto-Encoder: learn the mapping between probability distributions.
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Generative Attention Modeling

GAM: generate the representation based on the attention. By assuming independence between frames in a video, we get:
. — 117 .
P(X|A) = L p(x¢|Ae)

CVAE: introduce a latent variable z;, and attempt to generate each x; from z; and A;.

Py (Xt|Ar) = Ep.ﬁ..-,(ztm) [Py (Xt | Ar, Zt)]

Loss function:
Lovae = _qu;;(zﬂxt:)\t) log py; (ti\t: Zt)

+ B+ KL(qg (2t [xt. At)||py (e[ Ae))
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+ 8+ KL(gg(zt %t Ao)||pe (e[ Ad))
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Optimization

Temporal class activation maps: given a video with label y, the TCAM are computed by
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Loss function: The generated /T{g and ;1?9 are expected to be consistent with the bottom-up, class-agnostic attention 4,

hence the loss function can be formulated as:
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Training process

1. Update attention and classification modules with loss L = Lq + ¥1Lye + Y2Lguige, Where y1, y, denote the hyper-

parameters. L,, only has the first term of Ly 45

2. Update CVAE with loss Ly a5 -

Generative Attention Modeling
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Experiments

« THUMOS14 contains videos from 20 classes for action localization task. Each video contains 15.5 action clips on
average. Length of action instance varies widely, from a few seconds to minutes. Video length also ranges from a few
seconds to 26 minutes, with an average of around 3 minutes.

e ActivtyNetl.2 contains 100 classes of videos with both video-level labels and temporal annotations. Each video
contains 1.5 action instances on average.

* Evaluation Metrics: mean Average Precision



Experiments

Table 1: Attention evaluation on THUMOS14. The “Old”
model (O) is trained without the generative attention model-
ing, and the “New” model (N) is our DGAM. We assemble
specific models by alternately choosing Attention (Att) and
Classification (Cls) modules from the two models.

Attt Cls mAP@IoU

0.3 0.4 0.5 0.6 0.7
0) O 43.8 358 26.7 182 97
@) N 442 36.1 27.0 187 98
N O 46.1 382 288 194 11.2
N N 46.8 382 288 198 114

Table 2: Statistics comparison on THUMOSI14
with/without generative attention modeling. | indi-
cates lower is better, 7 indicates higher is better. For details
of notation, please refer to Section 4.3

Metric w/0 w/

latt — gt| / |gt] L1 0777  0.698
lgt — att| / |gt] L] 0.858 0.707
|(cls — gt) Natt| / |gt| 1T | 1.522 1.543
|(att N gt) —cls| / |gt| 1 | 0,001 0.001
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Ablation Studies

Table 4: Contribution of each design in DGAM on THU-
MOSI14. Note that when adding £,., Loy ag is involved

simultaneously.
ﬁfg ﬁbg Eguia’.e [:Te mAP@0.5
v - - - 21.5
v v - - 24.8
v v v - 26.7
v v v v 28.8

Table 6: Evaluation on dimension of latent space on THU-
MOS14. We experiment with different dimensions of 2",
n=4>5---.9.
log,(dim) 4 5 6 7 8 9
mAP@0.5 | 26.5 275 28.0 288 283 27.7

Table 7: Evaluation on parameter for reconstruction-
sampling trade-off in CVAE. mAP@0.5 is reported on
THUMOS14.

3 0.01 0.03 0.07 0.1 0.3 0.7

mAP@0.5 | 28.2 28.1 284 288 28.0 284
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Experiments

Table 3: Results on THUMOS 14 testing set. We report mAP values at IoU thresholds 0.1:0.1:0.9. Recent works in both fully-
supervised and weakly-supervised settings are reported. UNT and I3D represent UntrimmedNet and 13D feature extractor,
respectively. Our method outperforms the state-of-the-art methods, especially at high loU threshold, which means that our
model could produce finer and more precise predictions. Compared to fully-supervised methods, our DGAM can achieve
close or even better performance.

Method Supervision | Feature mAP@IoU
0.1 0.2 0.3 0.4 0.5 06 07 08 09
S-CNN [42] Full - 477 435 363 287 19.0 103 53 - -
R-C3D [52] Full - 545 515 448 356 289 - - - -
SSN [58] Full - 66.0 594 519 410 298 - - - -
Chao er al. [5] Full - 59.8 57.1 532 485 428 338 2038 - -
BSN [23] Full - - - 535 450 369 284 200 @ - -
P-GCN [56] Full - 69.5 678 63.6 57.8 49.1 - - - -
Hide-and-Seek [44] Weak - 364 278 195 127 68 - - - -
UntrimmedNet [49] Weak - 444 377 282 21.1 137 - - - -
Zhong et al. [59] Weak - 458 39.0 31.1 225 159 - - - -
AutoLoc [41] Weak UNT - - 358 29.0 212 134 58 - -
CleanNet [26] Weak UNT - - 370 309 239 139 7.1 - -
STPN [30] Weak I3D 520 447 355 258 169 99 43 12 0.1
MAAN [55] Weak I3D 59.8 508 41.1 306 203 120 69 26 02
W-TALC [34] Weak I3D 552 49.6 40.1 31.1 228 - 7.6 - -
Liu er al. [24] Weak I3D 574 508 412 321 231 150 7.0 - -
TSM [54] Weak I3D - - 39.5 - 24.5 - 7.1 - -
3C-Net [29] Weak I3D 56.8 498 409 323 246 - 7.7 - -
Nguyen et al. [31] Weak 13D 604 56.0 466 375 268 17.6 9.0 33 04
DGAM Weak I3D 60.0 542 468 38.2 288 198 114 3.6 04




Experiments

Table 5: Results on ActivityNetl.2 validation set. We report mAP at different IoU thresholds and mAP@AVG (average
mAP on thresholds 0.5:0.05:0.95). Note that * indicates utilization of weaker feature extractor than others. Our method
outperforms state-of-the-art methods by a large margin, where an improvement of 2% is made on mAP@AVG. Our result is
also comparable to fully-supervised models.

Method Supervision mAP@]loU
0.5 055 06 065 07 075 08 08 09 095 | AVG
SSN [58] Full 413 388 359 329 304 270 222 182 132 6.1 | 26.6
UntrimmedNet" [49] Weak 74 6.1 52 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6
AutoLoc™ [41] Weak 273 249 225 199 175 151 130 100 6.8 3.3 16.0
W-TALC [34] Weak 37.0 335 304 257 146 127 100 7.0 4.2 1.5 18.0
TSM [54] Weak 283 260 236 212 189 170 140 11.1 75 3.5 17.1
3C-Net [29] Weak 354 - - - 229 - - - 8.5 - 21.1
CleanNet [26] Weak 37.1 334 299 267 234 203 172 139 92 50 | 216
Liu et al. [24] Weak 36.8 - - - - 22.0 - - - 5.6 | 224
DGAM Weak 41.0 375 335 301 269 235 198 155 108 53 | 244
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