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Figure 1: Which patch (left or right) is “closer” to the middle patch in these examples? In each case, the tradi-

tional metrics (L2/PSNR, SSIM, FSIM) disagree with human judgments. But deep networks, even across architectures

(Squeezenet [20], AlexNet [27], VGG [51]) and supervision type (supervised [46], self-supervised [13, 40, 42, 63], and

even unsupervised [26]), provide an emergent embedding which agrees surprisingly well with humans. We further cal-

ibrate existing deep embeddings on a large-scale database of perceptual judgments; models and data can be found at

https://www.github.com/richzhang/PerceptualSimilarity.

Abstract

While it is nearly effortless for humans to quickly assess

the perceptual similarity between two images, the under-

lying processes are thought to be quite complex. Despite

this, the most widely used perceptual metrics today, such

as PSNR and SSIM, are simple, shallow functions, and fail

to account for many nuances of human perception. Re-

cently, the deep learning community has found that features

of the VGG network trained on ImageNet classification has

been remarkably useful as a training loss for image syn-

thesis. But how perceptual are these so-called “percep-

tual losses”? What elements are critical for their success?

To answer these questions, we introduce a new dataset of

human perceptual similarity judgments. We systematically

evaluate deep features across different architectures and

tasks and compare them with classic metrics. We find that

deep features outperform all previous metrics by large mar-

gins on our dataset. More surprisingly, this result is not re-

stricted to ImageNet-trained VGG features, but holds across

different deep architectures and levels of supervision (su-

pervised, self-supervised, or even unsupervised). Our re-

sults suggest that perceptual similarity is an emergent prop-

erty shared across deep visual representations.

1. Motivation

The ability to compare data items is perhaps the most

fundamental operation underlying all of computing. In

many areas of computer science it does not pose much dif-

ficulty: one can use Hamming distance to compare binary

patterns, edit distance to compare text files, Euclidean dis-

tance to compare vectors, etc. The unique challenge of com-

puter vision is that even this seemingly simple task of com-

paring visual patterns remains a wide-open problem. Not

only are visual patterns very high-dimensional and highly

correlated, but, the very notion of visual similarity is often

subjective, aiming to mimic human visual perception. For

instance, in image compression, the goal is for the com-

pressed image to be indistinguishable from the original by

a human observer, irrespective of the fact that their pixel

representations might be very different.

Classic per-pixel measures, such as ℓ2 Euclidean dis-

tance, commonly used for regression problems, or the re-

lated Peak Signal-to-Noise Ratio (PSNR), are insufficient

for assessing structured outputs such as images, as they as-

sume pixel-wise independence. A well-known example is

that blurring causes large perceptual but small ℓ2 change.

What we would really like is a “perceptual distance,”

which measures how similar are two images in a way

that coincides with human judgment. This problem has

been a longstanding goal, and there have been numerous

perceptually motivated distance metrics proposed, such as

SSIM [57], MSSIM [59], FSIM [61], and HDR-VDP [34].

However, constructing a perceptual metric is challeng-

ing, because human judgments of similarity (1) depend on

high-order image structure [57], (2) are context-dependent
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Figure 2: Example distortions. We show example distortions using our (a) traditional and (b) CNN-based methods.

[19, 36, 35], and (3) may not actually constitute a distance

metric [55]. The crux of (2) is that there are many differ-

ent “senses of similarity” that we can simultaneously hold

in mind: is a red circle more similar to a red square or to a

blue circle? Directly fitting a function to human judgments

may be intractable due the the context-dependent and pair-

wise nature of the judgments (which compare the similar-

ity between two images). Indeed, we show in this paper a

negative result where this approach fails to generalize, even

when trained on a large-scale dataset containing many dis-

tortion types.

Instead, might there be a way to learn a notion of per-

ceptual similarity without directly training for it? The com-

puter vision community has discovered that internal activa-

tions of deep convolutional networks, though trained on a

high-level image classification task, are often surprisingly

useful as a representational space for a much wider vari-

ety of tasks. For example, features from the VGG archi-

tecture [51] have been used on tasks such as neural style

transfer [17], image superresolution [23], and conditional

image synthesis [14, 8]. These methods measure distance

in VGG feature space as a “perceptual loss” for image re-

gression problems [23, 14].

But how well do these “perceptual losses” actually cor-

respond to human visual perception? How do they compare

to traditional perceptual image evaluation metrics? Does the

network architecture matter? Does it have to be trained on

the ImageNet classification task, or would other tasks work

just as well? Do the networks need to be trained at all?

In this paper, we evaluate these questions on a new large-

scale database of human judgments, and arrive at several

surprising conclusions. We find that internal activations

of networks trained for high-level classification tasks, even

across network architectures [20, 28, 51] and no further cal-

ibration, do indeed correspond to human perceptual judg-

ments. In fact, they correspond far better than the com-

monly used metrics like SSIM and FSIM [57, 61], which

were not designed to handle situations where spatial ambi-

guities are a factor [48]. Furthermore, the best performing

self-supervised networks, including BiGANs [13], cross-

channel prediction [63], and puzzle solving [40] perform

just as well at this task, even without the benefit of human-

labeled training data. Even a simple unsupervised network

initialization with stacked k-means [26] beats the classic

metrics by a large margin! This illustrates an emergent

property shared across networks, even across architectures

and training signals. Importantly, however, having some

training signal appears crucial – a randomly initialized net-

work achieves much lower performance.

Our study is based on a newly collected perceptual sim-

ilarity dataset, using a large set of distortions and real algo-

rithm outputs. It contains both traditional distortions, such

as contrast and saturation adjustments, noise patterns, fil-

tering, and spatial warping operations, and CNN-based al-

gorithm outputs, such as autoencoding, denoising, and col-

orization, produced by a variety of architectures and losses.

Our dataset is richer and more varied than previous datasets

of this kind [44]. We also collect judgments on outputs from

real algorithms for the tasks of superresolution, frame inter-

polation, and image deblurring, which is especially impor-

tant as these are the real-world use cases for a perceptual

metric. We show that our data can be used to “calibrate” ex-

isting networks, by learning a simple linear scaling of layer

activations, to better match low-level human judgments.

Our results are consistent with the hypothesis that per-

ceptual similarity is not a special function all of its own, but

rather a consequence of visual representations tuned to be

predictive about important structure in the world. Repre-

sentations that are effective at semantic prediction tasks are

also representations in which Euclidean distance is highly

predictive of perceptual similarity judgments.

Our contributions are as follows:

• We introduce a large-scale, highly varied, perceptual

similarity dataset, containing 484k human judgments.

Our dataset not only includes parameterized distor-

tions, but also real algorithm outputs. We also collect

judgments on a different perceptual test, just notice-

able differences (JND).

• We show that deep features, trained on supervised,

self-supervised, and unsupervised objectives alike,
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Dataset # Input Imgs/ Input Num Distort. # # Distort. # Judg- Judgment

Patches Type Distort. Types Levels Imgs/Patches ments Type

LIVE [50] 29 images 5 traditional continuous .8k 25k MOS

CSIQ [29] 30 images 6 traditional 5 .8k 25k MOS

TID2008 [45] 25 images 17 traditional 4 2.7k 250k MOS

TID2013 [44] 25 images 24 traditional 5 3.0k 500k MOS

BAPPS (2AFC–Distort) 160.8k 64× 64 patch 425 trad + CNN continuous 321.6k 349.8k 2AFC

BAPPS (2AFC–Real alg) 26.9k 64× 64 patch – alg outputs – 53.8k 134.5k 2AFC

BAPPS (JND–Distort) 9.6k 64× 64 patch 425 trad. + CNN continuous 9.6k 28.8k Same/Not same

Table 1: Dataset comparison. A primary differentiator between our proposed Berkeley-Adobe Perceptual Patch Similarity

(BAPPS) dataset and previous work is scale of distortion types. We provide human perceptual judgments on distortion set

using uncompressed images from [7, 10]. Previous datasets have used a small number of distortions at discrete levels. We

use a large number of distortions (created by sequentially composing atomic distortions together) and sample continuously.

For each input patch, we corrupt it using two distortions and ask for a few human judgments (2 for train, 5 for test set) per

pair. This enables us to obtain judgments on a large number of patches. Previous databases summarize their judgments into

a mean opinion score (MOS); we simply report pairwise judgments (two alternative force choice). In addition, we provide

judgments on outputs from real algorithms, as well as a same/not same Just Noticeable Difference (JND) perceptual test.

model low-level perceptual similarity surprisingly

well, outperforming previous, widely-used metrics.

• We demonstrate that network architecture alone does

not account for the performance: untrained nets

achieve much lower performance.

• With our data, we can improve performance by “cali-

brating” feature responses from a pre-trained network.

Prior work on datasets In order to evaluate existing sim-

ilarity measures, a number of datasets have been proposed.

Some of the most popular are the LIVE [50], TID2008 [45],

CSIQ [29], and TID2013 [44] datasets. These datasets are

referred to Full-Reference Image Quality Assessment (FR-

IQA) datasets and have served as the de-facto baselines for

development and evaluation of similarity metrics. A related

line of work is on No-Reference Image Quality Assessment

(NR-IQA), such as AVA [38] and LIVE In the Wild [18].

These datasets investigate the “quality” of individual im-

ages by themselves, without a reference image. We collect

a new dataset that is complementary to these: it contains a

substantially larger number of distortions, including some

from newer, deep network based outputs, as well as ge-

ometric distortions. Our dataset is focused on perceptual

similarity, rather than quality assessment. Additionally, it is

collected on patches as opposed to full images, in the wild,

with a different experimental design (more details in Sec 2).

Prior work on deep networks and human judgments

Recently, advances in DNNs have motivated investigation

of applications in the context of visual similarity and image

quality assessment. Kim and Lee [25] use a CNN to pre-

dict visual similarity by training on low-level differences.

Concurrent work by Talebi and Milanfar [53, 54] train a

deep network in the context of NR-IQA for image aesthet-

ics. Gao et al. [16] and Amirshahi et al. [3] propose tech-

niques involving leveraging internal activations of deep net-

works (VGG and AlexNet, respectively) along with addi-

tional multiscale post-processing. In this work, we conduct

a more in-depth study across different architectures, train-

ing signals, on a new, large scale, highly-varied dataset.

Recently, Berardino et al. [6] train networks on percep-

tual similarity, and importantly, assess the ability of deep

networks to make predictions on a separate task – predict-

ing most and least perceptually-noticeable directions of dis-

tortion. Similarly, we not only assess image patch similarity

on parameterized distortions, but also test generalization to

real algorithms, as well as generalization to a separate per-

ceptual task – just noticeable differences.

2. Berkeley-Adobe Perceptual Patch Similarity

(BAPPS) Dataset

To evaluate the performance of different perceptual met-

rics, we collect a large-scale highly diverse dataset of per-

ceptual judgments using two approaches. Our main data

collection employs a two alternative forced choice (2AFC)

test, that asks which of two distortions is more similar to a

reference. This is validated by a second experiment where

we perform a just noticeable difference (JND) test, which

asks whether two patches – one reference and one distorted

– are the same or different. These judgments are collected

over a wide space of distortions and real algorithm outputs.

2.1. Distortions

Traditional distortions We create a set of “traditional”

distortions consisting of common operations performed on

the input patches, listed in Table 2 (left). In general, we

use photometric distortions, random noise, blurring, spatial

shifts and corruptions, and compression artifacts. We show

qualitative examples of our traditional distortions in Fig-

ure 2. The severity of each perturbation is parameterized -
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Sub-type Distortion type

Photometric lightness shift, color shift, contrast, saturation

uniform white noise, Gaussian white, pink,

Noise & blue noise, Gaussian colored (between

violet and brown) noise, checkerboard artifact

Blur Gaussian, bilateral filtering

Spatial shifting, affine warp, homography,

linear warping, cubic warping, ghosting,

chromatic aberration,

Compression jpeg

Parameter type Parameters

Input null, pink noise, white noise,

corruption color removal, downsampling

# layers, # skip connections,

Generator # layers with dropout, force skip connection

network at highest layer, upsampling method,

architecture normalization method, first layer stride

# channels in 1st layer, max # channels

Discriminator number of layers

Loss/Learning weighting on oixel-wise (ℓ1), VGG,

discriminator losses, learning rate

Table 2: Our distortions. Our traditional distortions (left) are performed by basic low-level image editing operations. We

also sequentially compose them to better explore the space. Our CNN-based distortions (right) are formed by randomly

varying parameters such as task, network architecture, and learning parameters. The goal of the distortions is to mimic

plausible distortions seen in real algorithm outputs.

for example, for Gaussian blur, the kernel width determines

the amount of corruption applied to the input image. We

also compose pairs of distortions sequentially to increase

the overall space of possible distortions. In total, we have

20 distortions and 308 sequentially composed distortions.

CNN-based distortions To more closely simulate the

space of artifacts that can arise from deep-learning based

methods, we create a set of distortions created by neural net-

works. We simulate possible algorithm outputs by explor-

ing a variety of tasks, architectures, and losses, as shown in

Table 2 (right). Such tasks include autoencoding, denoising,

colorization, and superresolution. All of these tasks can be

achieved by applying the appropriate corruption to the in-

put. In total, we generated 96 “denoising autoencoders” and

use these as CNN-based distortion functions. We train each

of these networks on the 1.3M ImageNet dataset [46] for 1

epoch. The goal of each network is not to solve the task per

se, but rather to explore common artifacts that plague the

outputs of deep learning based methods.

Distorted image patches from real algorithms The true

test of an image assessment algorithm is on real problems

and real algorithms. We gather perceptual judgments us-

ing such outputs. Data on real algorithms is more limited,

as each application will have their own unique properties.

For example, different colorization methods will not show

much structural variation, but will be prone to effects such

as color bleeding and color variation. On the other hand,

superresolution will not have color ambiguity, but may see

larger structural changes from algorithm to algorithm.

Superresolution We evaluate results from the 2017

NTIRE workshop [2]. We use 3 tracks from the workshop

– ×2, ×3, ×4 upsampling rates using “unknown” down-

sampling to create the input images. Each track had ap-

proximately 20 algorithm submissions. We also evaluate

several additional methods, including bicubic upsampling,

and four of the top performing deep superresolution meth-

ods [24, 58, 31, 47]. A common qualitative way of present-

ing superresolution results is zooming into specific patches

and comparing differences. As such, we sample random

64 × 64 triplets from random locations of images in the

Div2K [2] dataset – the ground truth high-resolution image,

along with two algorithm outputs.

Frame interpolation We sample patches from differ-

ent frame interpolation algorithms, including three vari-

ants of flow-based interpolation [33], CNN-based interpo-

lation [39], and phase-based interpolation [37] on the Davis

Middleburry dataset [49]. Because artifacts arising from

frame interpolation may occur at different scales, we ran-

domly rescale the image before sampling a patch triplet.

Video deblurring We sample from the video deblurring

dataset [52], along with deblurring outputs from Photoshop

Shake Reduction, Weighted Fourier Aggregation [11], and

three variants of a deep video deblurring method [52].

Colorization We sample patches using random scales

on the colorization task, on images from the ImageNet

dataset [46]. The algorithms are from pix2pix [22], Lars-

son et al. [30], and variants from Zhang et al. [62].

2.2. Psychophysical Similarity Measurements

2AFC similarity judgments We randomly select an im-

age patch x and apply two distortions to produce patches

x0, x1. We then ask a human which is closer to the origi-

nal patch x, and record response h ∈ {0, 1}. On average,

people spent approximately 3 seconds per judgment. Let T
denote our dataset of patch triplets (x, x0, x1, h).

A comparison between our dataset and previous datasets

is shown in Table 1. Previous datasets have focused on col-

lecting large numbers of human judgments for a few im-

ages and distortion types. For example, the largest dataset,

TID2013 [44], has 500k judgments on 3000 distortions

(from 25 input images with 24 distortions types, each sam-

pled at 5 levels). We provide a complementary dataset

that focuses instead on a large number of distortions types.

In, addition, we collect judgments on a large number of
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64 × 64 patches rather than a small number of images.

There are three reasons for this. First, the space of full

images is extremely large, which makes it much harder to

cover a reasonable portion of the domain with judgments

(even 64 × 64 color patches represent an intractable 12k-

dimensional space). Second, by choosing a smaller patch

size, we focus on lower-level aspects of similarity, to miti-

gate the effect of differing “respects of similarity” that may

be influenced by high-level semantics [36]. Finally, mod-

ern methods for image synthesis train deep networks with

patch-based losses (implemented as convolutions) [8, 21].

Our dataset consists of over 161k patches, derived from the

MIT-Adobe 5k dataset [7] (5000 uncompressed images) for

training, and the RAISE1k dataset [10] for validation.

To enable large-scale collection, our data is collected

“in-the-wild” on Amazon Mechanical Turk, as opposed to

a controlled lab setting. Crump et al. [9] show that AMT

can be reliably used to replicate many psychophysics stud-

ies, despite the inability to control all environmental factors.

We ask for 2 judgments per example in our “train” set and

5 judgments in our “val” sets. Asking for fewer judgments

enables us to explore a larger set of image patches and dis-

tortions. We add sentinels which consist of pairs of patches

with obvious deformations, e.g., a large amount of Gaussian

noise vs a small amount of Gaussian noise. Approximately

90% of Turkers were able to correctly pass at least 93% of

the sentinels (14 of 15), indicating that they understood the

task and were paying attention. We choose to use a larger

number of distortions than prior datasets

Just noticeable differences (JND) A potential short-

coming of the 2AFC task is that it is “cognitively penetra-

ble,” in the sense that participants can consciously choose

which respects of similarity they will choose to focus on

in completing the task [36], which introduces subjectivity

into the judgments. To validate that the judgments actu-

ally reflected something objective and meaningful, we also

collected user judgments of “just noticeable differences”

(JNDs). We show a reference image, followed by a ran-

domly distorted image, and ask a human if the images are

the same or different. The two image patches are shown for

1 second each, with a 250 ms gap in between. Two images

which look similar may be easily confused, and a good per-

ceptual metric will be able to order pairs from most to least

confusable. JND tests like this may be considered less sub-

jective, since there is a single correct answer for each judg-

ment, and participants are presumed to be aware of what

correct behavior entails. We gather 3 JND observations for

each of the 4.8k patches in our traditional and CNN-based

validation sets. Each subject is shown 160 pairs, along with

40 sentinels (32 identical and 8 with large Gaussian noise

distortion applied). We also provide a short training period

of 10 pairs which contain 4 “same” pairs, 1 obviously differ-

ent pair, and 5 “different” pairs generated by our distortions.

Dataset
Data Train/ # Ex- # Judge

source Val amples /Example

Traditional [7] Train 56.6k 2

CNN-based [7] Train 38.1k 2

Mixed [7] Train 56.6k 2

2AFC–Distort [Trn] – Train 151.4k 2

Traditional [10] Train 4.7k 5

CNN-based [10] Train 4.7k 5

2AFC–Distort [Val] – Val 9.4k 5

Superres [32] Val 10.9k 5

Frame Interp [49] Val 1.9 5

Video Deblur [5] Val 9.4 5

Colorization [46] Val 4.7 5

2AFC–Real Alg [Val] – Val 26.9k 5

Traditional [10] Val 4.8k 3

CNN-based [10] Val 4.8k 3

JND–Distort – Val 9.6k 3

Table 3: Our dataset breakdown. We split our 2AFC

dataset in to three main portions (1,2) training and test sets

with our distortions. Our training and test sets contain

patches sampled from the MIT5k [7] and RAISE1k [10]

datasets, respectively (3) a test set containing real algorithm

outputs, containing patches from a variety of applications.

Our JND data is on traditional and CNN-based distortions.

We chose to do this in order to prime the users towards ex-

pecting approximately 40% of the patch pairs to be identi-

cal. Indeed, 36.4% of the pairs were marked “same” (70.4%
of sentinels and 27.9% of test pairs).

3. Deep Feature Spaces

We evaluate feature distances in different networks. For

a given convolutional layer, we compute cosine distance (in

the channel dimension) and average across spatial dimen-

sions and layers of the network. We also discuss how to

tune an existing network on our data.

Network architectures We evaluate the SqueezeNet [20],

AlexNet [28], and VGG [51] architectures. We use 5

conv layers from the VGG network, which has become

the de facto standard for image generation tasks [17, 14, 8].

We also compare against the shallower AlexNet network,

which may more closely match the architecture of the hu-

man visual cortex [60]. We use the conv1-conv5 layers

from [27]. Finally, the SqueezeNet architecture was de-

signed to be extremely lightweight (2.8 MB) in size, with

similar classification performance to AlexNet. We use the

first conv layer and subsequent “fire” modules.

We additionally evaluate self-supervised methods, in-

cluding puzzle-solving [40], cross-channel prediction [62,

63], learning from video [42], and generative model-

ing [13]. We use publicly available networks from these
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Figure 4: Quantitative comparison. We show a quantitative comparison across metrics on our test sets. (Left) Results

averaged across our traditional and CNN-based distortions. (Right) Results averaged across our 4 real algorithm sets.

and other methods, which use variants of AlexNet [28].

Network activations to distance Figure 3 (left) and Equa-

tion 1 illustrate how we obtain the distance between ref-

erence and distorted patches x, x0 with network F . We

extract feature stack from L layers and unit-normalize in

the channel dimension, which we designate as ŷl, ŷl
0

∈
R

Hl×Wl×Cl for layer l. We scale the activations channel-

wise by vector wl ∈ RCl and compute the ℓ2 distance. Fi-

nally, we average spatially and sum channel-wise. Note that

using wl = 1∀l is equivalent to computing cosine distance.

d(x, x0) =
∑

l

1

HlWl

∑

h,w

||wl ⊙ (ŷlhw − ŷl
0hw)||

2

2
(1)

Training on our data We consider a few variants for

training with our perceptual judgments: lin, tune, and

scratch. For the lin configuration, we keep pre-trained

network weights F fixed, and learn linear weights w on

top. This constitutes a “perceptual calibration” of a few

parameters in an existing feature space. For example, for

the VGG network, 1472 parameters are learned. For the

tune configuration, we initialize from a pre-trained classi-

fication model, and allow all the weights for network F to

be fine-tuned. Finally, for scratch, we initialize the net-

work from random Gaussian weights and train it entirely

on our judgments. Overall, we refer to these as variants of

our proposed Learned Perceptual Image Patch Similar-

ity (LPIPS) metric. We illustrate the training loss function

in Figure 3 (right) and describe it further in the appendix.

4. Experiments

Results on our validation sets are shown in Figure 4. We

first evaluate how well our metrics and networks work. All

validation sets contain 5 pairwise judgments for each triplet.

Because this is an inherently noisy process, we compute

agreement of an algorithm with all of the judgments. For

example, if there are 4 preferences for x0 and 1 for x1, an

algorithm which predicts the more popular choice x0 would

receive 80% credit. If a given example is scored with frac-

tion p humans in one direction and 1 − p in the other, a

human would achieve score p2 + (1− p)2 on expectation.
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Figure 5: Correlating Perceptual Tests. We show perfor-

mance across methods, including unsupervised [26], self-

supervised [1, 43, 12, 56, 62, 41, 42, 40, 13, 63], super-

vised [27, 51, 20], and our perceptually-learned metrics

(LPIPS). The scores are on our 2AFC and JND tests, av-

eraged across traditional and CNN-based distortions.

2AFC JND Class. Det. Avg

Perceptual 2AFC – .928 .640 .363 .644

Perceptual JND .928 – .612 .232 .591

PASCAL Classification .640 .612 – .429 .560

PASCAL Detection .363 .232 .429 – .341

Table 4: Task correlation. We correlate scores between

our low-level perceptual tests along with high-level seman-

tic tests across methods. Perceptual scores are averaged be-

tween traditional and CNN-based distortion sets. Correla-

tion scores are computed for AlexNet-like architectures.

4.1. Evaluations

How well do low-level metrics and classification net-

works perform? Figure 4 shows the performance of

various low-level metrics (in red), deep networks, and hu-

man ceiling (in black). The scores are averaged across the

2 distortion test sets (traditional+CNN-based) in Figure 4

(left), and 4 real algorithm benchmarks (superresolution,

frame interpolation, video deblurring, colorization) in Fig-

ure 4 (right). All scores within each test set are shown in the

appendix. Averaged across all 6 test sets, humans are 73.9%
consistent. Interestingly, the supervised networks perform

at about the same level to each other, at 68.6%, 68.9%, and

67.0%, even across variation in model sizes – SqueezeNet

(2.8 MB), AlexNet (9.1 MB), and VGG (58.9 MB) (only

convolutional layers are counted). They all perform bet-

ter than traditional metrics ℓ2, SSIM, and FSIM at 63.2%,

63.1%, 63.8%, respectively. Despite its common use, SSIM

was not designed for situations where geometric distortion

is a large factor [48].

Does the network have to be trained on classification?

In Figure 4, we show model performance across a vari-

ety of unsupervised and self-supervised tasks, shown in

green – generative modeling with BiGANs [13], solving

puzzles [40], cross-channel prediction [63], and segmenting

foreground objects from video [42]. These self-supervised

tasks perform on par with classification networks. This in-

dicates that tasks across a large spectrum can induce rep-

resentations which transfer well to perceptual distances.

Also, the performance of the stacked k-means method [26],

shown in yellow, outperforms low-level metrics. Random

networks, shown in orange, with weights drawn from a

Gaussian, do not yield much improvement. This indicates

that the combination of network structure, along with ori-

enting filters in directions where data is more dense, can

better correlate to perceptual judgments.

In Table 5, we explore how well our perceptual task cor-

relates to semantic tasks on the PASCAL dataset [15], us-

ing results summarized in [63], including additional self-

supervised methods [1, 43, 12, 56, 62, 41]. We compute

the correlation coefficient between each task (perceptual or

semantic) across different methods. The correlation from

our 2AFC distortion preference task to classification and de-

tection is .640 and .363, respectively. Interestingly, this is

similar to the correlation between the classification and de-

tection tasks (.429), even though both are considered “high-

level” semantic tasks, and our perceptual task is “low-level.”

Do metrics correlate across different perceptual tasks?

We test if training for the 2AFC distortion preference test

corresponds with another perceptual task, the JND test. We

order patch pairs by ascending order by a given metric, and

compute precision-recall on our CNN-based distortions –

for a good metric, patches which are close together are more

likely to be confused for being the same. We compute area

under the curve, known as mAP [15]. The 2AFC distortion

preference test has high correlation to JND: ρ = .928 when

averaging the results across distortion types. Figure 5 shows

how different methods perform under each perceptual test.

This indicates that 2AFC generalizes to another perceptual

test and is giving us signal regarding human judgments.

Can we train a metric on traditional and CNN-based

distortions? In Figure 4, we show performance using

our lin, scratch, and tune configurations, shown in purple,

pink, and brown, respectively. When validating on the tra-

ditional and CNN-based distortions (Figure 4(a)), we see

improvements. Allowing the network to tune all the way

through (brown) achieves higher performance than simply

learning linear weights (purple) or training from scratch

(pink). The higher capacity network VGG also performs

better than the lower capacity SqueezeNet and AlexNet ar-

chitectures. These results verify that networks can indeed

learn from perceptual judgments.

Does training on traditional and CNN-based distortions
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Figure 6: Qualitative comparisons on distortions. We show qualitative comparison on traditional distortions, using the

SSIM [57] metric and BiGAN network [13]. We show examples where the metrics agree and siagree. A primary difference

is that deep embeddings appear to be more sensitive to blur. Please see the appendix for additional examples.

transfer to real-world scenarios? We are more inter-

ested in how performance generalizes to real-world algo-

rithms, shown in Figure 4(b). The SqueezeNet, AlexNet,

and VGG architectures start at 64.0%, 65.0%, and 62.6%,

respectively. Learning a linear classifier (purple) improves

performance for all networks. Across the 3 networks and

4 real-algorithm tasks, 11 of the 12 scores improved, indi-

cating that “calibrating” activations on a pre-existing rep-

resentation using our data is a safe way to achieve a small

boost in performance (1.1%, 0.3%, and 1.5%, respectively).

Training a network from scratch (pink) yields slightly lower

performance for AlexNet, and slightly higher performance

for VGG than linear calibration. However, these still out-

perform low-level metrics. This indicates that the distor-

tions we have expressed do project onto our test-time tasks

of judging real algorithms.

Interestingly, starting with a pre-trained network and tun-

ing throughout lowers transfer performance. This is an in-

teresting negative result, as training for a low-level percep-

tual task directly does not necessarily perform as well as

transferring a representation trained for the high-level task.

Where do deep metrics and low-level metrics disagree?

In Figure 6, we show a qualitative comparison across our

traditional distortions for a deep method, BiGANs [13], and

a representation traditional perceptual method, SSIM [57].

Pairs which BiGAN perceives to be far but SSIM to be close

generally contain some blur. BiGAN tends to perceive cor-

related noise patterns to be a smaller distortion than SSIM.

5. Conclusions

Our results indicate that networks trained to solve chal-

lenging visual prediction and modeling tasks end up learn-

ing a representation of the world that correlates well with

perceptual judgments. A similar story has recently emerged

in the representation learning literature: networks trained on

self-supervised and unsupervised objectives end up learning

a representation that is also effective at semantic tasks [12].

Interestingly, recent findings in neuroscience make much

the same point: representations trained on computer vision

tasks also end up being effective models of neural activ-

ity in macaque visual cortex [60]. Moreover (and roughly

speaking), the stronger the representation is at the computer

vision task, the stronger it is as a model of cortical activity.

Our paper makes a similar finding: the stronger a feature

set is at classification and detection, the stronger it is as a

model of perceptual similarity judgments, as suggested in

Table 4. Together, these results suggest that a good feature

is a good feature. Features that are good at semantic tasks

are also good at self-supervised and unsupervised tasks, and

also provide good models of both human perceptual behav-

ior and macaque neural activity. This last point aligns with

the “rational analysis” explanation of visual cognition [4],

suggesting that the idiosyncrasies of biological perception

arise as a consequence of a rational agent attempting to

solve natural tasks. Further refining the degree to which

this is true is an important question for future research.
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