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Notations
m X: a set of instances
m )V: a set of labels
m H: a set of hypotheses
m S: a training set (S C X)
m D: a distribution over X x Y
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Review

m Loss function /: H x (X x V) — Ry

m Empirical risk

Ls(h) = % ZlNzl /(h?Xi7.yf)7 5 = {(Xlayl)a ) (XNayN)}
m True risk Lp(h) := E(x y)~pl/(h, x, y)]

ERM | ing hs := inLs(h
] eamning hs := arg min s(h)
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Agnostic PAC learnable

A hypothesis class H is agnostic PAC learnable if there exist a function
my; - (0,1)> — N and a learning algorithm with the following property:
For every €,0 € (0,1) and for every distribution D over X x ), when
running the learning algorithm on m > my(e, ) i.i.d. examples generated
by D, the algorithm returns a hypothesis h such that, with probability of
at least 1 — 0 over the choice of the m training examples,

Lp(h) < min Lp(h') + €
neH
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Uniform Convergence

We say that a hypothesis class H has the uniform convergence property
(w.r.t.a domain X x ) and a loss function /) if there exists a function
mYC : (0,1)2 — N such that for every €,d € (0,1) and for every
probability distribution D over X x ), if S is a sample of m > m%c(e,é)
examples drawn i.i.d. according to D, then, with probability of at least

1 -4, S is e-representative.

Vhe M, |Ls(h) — Lp(h)| < €
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Finite classes are agnostic learnable

Peking University

Let H be a finite hypothesis class. Then, H enjoys the uniform
convergence property with sample complexity

log(2|H]|/6
m%c(e’(;)g g(2\62 1/9)

Furthermore, the class is agonostically PAC learnable using the ERM
algorithm with sample complexity

2log(2|H]/9)

m(e, 8) < mf(e/2,0) <
€
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Finite classes are agnostic learnable

Peking University

Let H be a finite hypothesis class. Then, H enjoys the uniform
convergence property with sample complexity
log(2[#]/)
uc
J) < =L
my (67 )— 262
Furthermore, the class is agonostically PAC learnable using the ERM
algorithm with sample complexity
2log(2 )
(e, 0) < mi<(e/2,0) < 2B
€

"H is finite' is not necessary !
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An example: Infinite-size classes can be learnable
H = {The thresholds of the real line}

+

For any ¢, 8, we need to find a function my (e, §), such that when m >
my(€,6), we have L (hs) < € with the probability of at least 1 — &, where

hg=argmingesr Ls(h) (ERM Learning)
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An example: Infinite-size classes can be learnable
» Proof: Let a* be a threshold such that h* achieves Ly(h*) = 0.
€ mass

€ mass
A Al
e N +
| | |
| | |
*
(20 a aq

Pyp [x € (ag,a”)] = Pyop, [x € (a",a1)] = €
Ps.

If Pyop [x € (—0,a")] < €, we set ay = —©
Yujia Liu

If Py.p [x € (a",+0)] < €, we set a; = +o.
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An example: Infinite-size classes can be learnable
- by b
S —.—&Q—Q—Q—O—l—l—.‘—.—.—.—.—.—

hg=argminys Ls(h) (ERM Learning)

bo b .
by < by < by
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An example: Infinite-size classes can be learnable

If by =agand by < a4

- +
0 by ay
€ mass € mass € mass € mass
— + — [ \'g \ +
a, a Qa a
0 bs a* 1 0 a* bs 1
Lp(hs) <€ Lp(hs) <€
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An example: Infinite-size classes can be learnable
B by b
2} b a

+
by = ay and by < a4

1
= Lp(hy) <€
Lp(hg) > €

l the converse-negative proposition
= by<agorb; >a

]PS~D[LD (hs) > E] < IPS~D[bO <agor bl > al]

Yujia Liu

< Psplby < ao] + Ps.p[b; > a4]
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An example: Infinite-size classes can be learnable

_ bo by n
¥ | |l .
*«—oo—o l lo—o-o
Qo ay
a
Ps._plbo < ao] = Ps.p[¥ (x,y) €S, x € (ap,a")] Ps.plby > a1] = Psp[V(x,y) € S,x € (a*,a1)]
=(l-em<em =(l-em<e™m

!

Ps.p[Lp(hs) > €] < Ps.p[by < aq or by > a4]
< Ps.plbo < ag] + Ps~plby > a4]
<2e"cm
l When m > log(2/6) /e

Ps.p[Lp(hs) > €] <8

u]
]
I
i
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A Question

What is the sufficient condition for learnability?
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A Question

What is the sufficient condition for learnability?

The VC-Dimension of H is finite!
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and let C = {ci, o,

What is the VC-Dimension?
Before introducing the VC-dimension, we need to learn some definitions:

m (Restriction H to C.) Let H be a class of functions from X to {0,1}

,Cm} C X. The restriction of H to C is the
set of functions from C to {0,1} that can be derived from #. That is

He =A{(h(ar), h(cz), -+ h(cm)) : h € H}
{0,1}I¢l.

where we represent each function from C to {0,1} as a vector in
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What is the VC-Dimension?
Before introducing the VC-dimension, we need to learn some definitions:

m (Shattering.) A hypothesis class H shatters a finite set C C X if H¢

H = {The thresholds of the real line}

+

is the set of all functions from C to {0,1}. That is, |H¢| = 2/€I.

= {c1} v
=

1,62} (61 <) X
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What is the VC-Dimension?

(VC-Dimension.) The VC-Dimension of a hypothesis class H, denoted
VCdim(H), is the maximal size of a set C C X’ that can be shattered by
H. If H can shatter sets of arbitrarily large size we say that H has infinite
VC-Dimension.

The VC-Dimension is d:
- There exists a set of d points that can be shattered
- There is no set of d 4+ 1 points that can be shattered

Yujia Liu The VC-Dimension



Some examples for the VC-Dimension

Threshold Functions

Intervals |

The number of parameters

[
[
m Axis Aligned Rectangles
[
[

Finite Classes a b
b,
- +
by
a az
D a e = = san
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The VC-Dimension & The number of parameters

H = {x — sgn(sin(6x)) : 0 € R}
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The VC-Dimension & The number of parameters

H = {x — sgn(sin(6x)) : 0 € R}
m The number of parameters in # is 1, but VCdim(H)= oo
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The VC-Dimension & The number of parameters

H = {x — sgn(sin(6x)) : 0 € R}
m The number of parameters in # is 1, but VCdim(H)= oo

m (Lemma) If 0.x1x2x3 - - - , is the binary expansion of x € (0,1), then
for any natural number m, sgn(sin(2"7x)) = (1 — x;n).
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The VC-Dimension & The number of parameters

H = {x — sgn(sin(6x)) : 0 € R}
m The number of parameters in H is 1, but VCdim(H)= oc.
m (Lemma) If 0.x1x2x3 - - - , is the binary expansion of x € (0,1), then
for any natural number m, sgn(sin(2"7x)) = (1 — x;n).
m For Vd € N, we construct a set of d points: (1) the label of ¢; is y;;
(2) g =27(i=1,2,---,d). Set 6 = (3%, (1 - y;)2)
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Questions to be answered

PAC learnability?

m Is 'finite VC-Dimension’ is a necessary and sufficient condition for the
m Why we come to the VC-Dimension?
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(No Free Lunch.)

Let H be a hypothesis class of functions from X to {0, 1}.

Assume there is a set C C X of size 2m that can be shattered by H. Let
S C C of size m be a training set.

Then, for any learning algorithm, A, there exist a distribution D over
X x {0,1} and a predictor h € H.

Such that Lp(h) = 0 but with probability of at least 1/7 over the choice
of S ~ D, we have that Lp(A(S)) > 1/8.
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PAC learnable = VCdim(H) is finite

Peking University

Proof. VCdim(#) is infinite = # is not PAC learnable

Since ‘H has an infinite VC-Dimension, for any training set size m, there
existed a shattered set of 2m, and the claim follows by No Free Lunch

Theorem (H is not learnable).

The VC-Dimension
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VCdim(#H) is finite = PAC learnable

m Step 1: VCdim(#H) is finite = m3(m) < 329, (M)
property

m Step 2: 7(m) < 329 () = H has the uniform convergence
learnable

m Step 3: H has the uniform convergence property = H is PAC

Yujia Liu
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Growth Function

The growth function measures the maximal "effective” size of H on a set
of m examples.
m (Growth Function.) Let H be a hypothesis class. Then the growth
function of H, denoted 7 : N — N, is defined as:

Yujia Liu The VC-Dimension



Sauer’s Lemma

Peking University

Let H be a hypothesis class with VCdim(H) = d < 4+o00. Then, for all
m>d, m(m) < %, (7). Furthermore, 75(m) < (em/d).
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Sauer’s Lemma

Peking University

Let H be a hypothesis class with VCdim(H) = d < 4+o00. Then, for all
m>d, m(m) < %, (7). Furthermore, 75(m) < (em/d).

m [Hcl = O(IC]%).

Yujia Liu

The VC-Dimension




Sauer’s Lemma

Let H be a hypothesis class with VCdim(H) = d < 4+o00. Then, for all
m>d, m(m) < %, (7). Furthermore, 75(m) < (em/d).

m [He| = O(ICl).
m The size of H¢ grows polynomially rather than exponentially with |C].
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Proof of Sauer’s Lemma

A claim: For any C ={c1, ¢, - ,Cm}, we have
VH, |Hc| <|B C C: H shatters B|

Proof: (the mathematical induction)

(1) When m=1,v
(2) Suppose the inequality holds for sets of size k < m
(3) Prove the inequality holds for sets of size m.
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Proof of Sauer’'s Lemma — Claim (3)

Fix H and C = {c1, ¢, -+ ,cm}. Denote c = {c2,--+,cm}. In addition,
define the following two sets:

Yo=A{(2y3,- ,¥m)  (0,y2,--+ ,ym) € HcV(1,y2,- -+ ,¥ym) € Hc}

Yl - {(y27y37" : ’ym) : (07y27"' 7ym) € HC/\(LYL” : 7.ym) € HC}

We have:
(1) [Hcl = Yol + V1]
(2) Yo =H . Moreover,

Yol = |Ho| <{BC C' : H shatters B}|
=[|{B C C:c1 ¢ BAH shatters B}|
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Proof of Sauer’'s Lemma — Claim (3)
C={ca,c, - ,cm} and c ={c, " ,Cm}
YO = {(y27.y37 e 7ym) : (07}/27 e ,}/m) S HC\/(L)Q, e
Yl - {(}/27}/37’ T 7)/m) : (07}/27’ c
Next, we define H C H to be
H ={heH:3h €Hst.

7)/m) € HC/\(]-’)Q&

7}/m) € HC}
a}/m) € HC}

(1= h(a)h(c) - b (em))

Yujia Liu

(h(er), h(ea), -+ h(em))}
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Proof of Sauer’'s Lemma — Claim (3)
C={ca,c, - ,cm} and c ={c, " ,Cm}

YO = {()/27}/37"' 7}/m) : (07}/27"' ,}/m) S HC\/(]-;)Q;"' 7}’m) S HC}

Yl = {(}/27}/37"’ ,}/m) : (0,}/2,"‘ 7ym) € HC/\(]-&}/%"' ,}/m) € HC}
Next, we define %' C H to be

H ={heH:3h €Hst.
(1= h(cr),h (), h (cm)) = (h(c1), h(c2), -, h(cm))}

Then, it is obvious that Y; = ’H'C,. Moreover,

Y1 = |H/C/| < |{B/ c €'+ shatters B/}\ = \{B/ c ¢ 1 shatters B Ucl

={BCC:ace€ BAH shatters B}|
< |{B C C: c € BAH shatters B}|
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Proof of Sauer’s Lemma
Overall, we have shown that
[Hcl = | Yol + Y4l
= |{B C C : H shatters B}

<{BC C:ci ¢ BAHshatters B} +|{BC C:q € BAH shatters B}|
shattered by #H. Therefore

If VCdim(H) < d, then no set whose size is larger than d can be

d
[{B C C : H shatters B}| < Z (M
i=0
Yujia Liu
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VCdim(#H) is finite = The uniform convergence

Theorem (6.11)

Let H be a class of hypothesis and let T3 be its growth function. The loss
is 0-1 loss. Then, for every D and every ¢ € (0,1), with probability of at
least 1 — 0 over the choice of S ~ D we have

Lp(h) — Ls(h)| < 2 V/1oe(m(2m))

0v2m
Proof.
1) Esplsup |Lp(h) — Ls(h)|] < Evlos(r(2m))
(1) Es~ofsup Ito(h) = Ls(h] < =
(2) Markov's inequality (Section B.1) 0
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VCdim(#H) is finite = The uniform convergence

m Sauer's lemma: when m > d, we have 73;,(2m) < (2em/d)?
m Theorem 6.11: with probability of at least 1 — J,

ILp(h) — Ls(h)] <

log (T3 (2m

ovV2m
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VCdim(#H) is finite = The uniform convergence

m Sauer's lemma: when m > d, we have 73;,(2m) < (2em/d)?
m Theorem 6.11: with probability of at least 1 — J,

log(73,(2m))
5v2m

m Combining these two conclusions, we have,

Lo(h) — Ls(n)] < EVTOEB/E)

Lp(h) — Ls(h) < 2
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m Assume

VCdim(#H) is finite = The uniform convergence

dlog(2em/d) > 4,

Peking University

1 /2dlog(2em/d)
Lo(h) — Ls(h)| < 51/ =52
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m Assume

VCdim(#H) is finite = The uniform convergence

dlog(2em/d) > 4,

Peking University
1 /2dlog(2em/d)

Lp(h) — Ls(h)| < =

Lo(h) - Ls(h)] < 5/ =252

m To ensure the proceeding is at most €, we need,

m> 2d log(m)

(0e)?

2dlog(2e/d)

(9¢)?
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VCdim(#H) is finite = The uniform convergence

Peking University

m Assume +/dlog(2em/d) > 4,

ILp(h) — Ls(h)| < ;\/W

m To ensure the proceeding is at most €, we need,
> 2dlog(m) 2dlog(2e/d)
o (0e)? (0¢)?

m (Lemma A.2 in Appendix A) There exists a function (e, d) which is a
sufficient condition for the proceeding to hold
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m Assume

VCdim(#H) is finite = The uniform convergence

dlog(2em/d) > 4,

Peking University
1 /2dlog(2em/d)
— < —
Lo(h) - Ls(h)] < 5/ =252

m To ensure the proceeding is at most €, we need,

m> 2d log(m)

(0e)?

2d log(2e/d)

(0€)?
m (Lemma A.2 in Appendix A) There exists a function (e, d) which is a
sufficient condition for the proceeding to hold
m Finally, we can let mY¢(e, §) = f(e,8). Then the uniform convergence
property of H is proved

Yujia Liu

The VC-Dimension




Conclude

(The Fundamental Theorem of Statistical Learning) Let the loss function
be the 0 — 1 loss.
H has a finite VC-Dimension
Chapter 6 l

No free lunch
H has the uniform convergence property
lChapTer 28
Chapter 4
Corollary 4.4

Any ERM rule is a successful PAC learner for 7 W) 3 is PAC learnable

trivial

Yujia Liu

trivial
Any ERM rule is a successful agnostic PAC learner for 3 — H is agnostic PAC learnable
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Conclude

Then

Peking University

(The Fundamental Theorem of Statistical Learning - Quantitative Version)
my.(€,6)

Let the loss function be the 0 — 1 loss. Assume VCdim(H) = d < +o0

€2

d +10g(1/9),
0( 2

- Uniform Convergence A?_'::xsr:zb’rc PAC Learnable
d +log(1/6)

Yujia Liu

d log(1/€) + log(1/8)

€2
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