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Review

Notations
X : a set of instances
Y: a set of labels
H: a set of hypotheses
S: a training set (S ⊂ X )
D: a distribution over X × Y
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Review

Loss function l : H× (X × Y) −→ R+

Empirical risk
LS(h) := 1

N
∑N

i=1 l(h, xi , yi),S = {(x1, y1), · · · , (xN , yN)}
True risk LD(h) := E(x ,y)∼D [l(h, x , y)]
ERM learning hS := arg min

h∈H
LS(h)
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Agnostic PAC learnable

A hypothesis class H is agnostic PAC learnable if there exist a function
mH : (0, 1)2 −→ N and a learning algorithm with the following property:
For every ε, δ ∈ (0, 1) and for every distribution D over X × Y , when
running the learning algorithm on m ≥ mH(ε, δ) i.i.d. examples generated
by D, the algorithm returns a hypothesis h such that, with probability of
at least 1 − δ over the choice of the m training examples,

LD(h) ≤ min
h′∈H

LD(h
′
) + ε
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Uniform Convergence

We say that a hypothesis class H has the uniform convergence property
(w.r.t.a domain X × Y and a loss function l) if there exists a function
mUC

H : (0, 1)2 −→ N such that for every ε, δ ∈ (0, 1) and for every
probability distribution D over X × Y, if S is a sample of m ≥ mUC

H (ε, δ)
examples drawn i.i.d. according to D, then, with probability of at least
1 − δ, S is ε-representative.

∀h ∈ H, |LS(h)− LD(h)| ≤ ε
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Finite classes are agnostic learnable

Let H be a finite hypothesis class. Then, H enjoys the uniform
convergence property with sample complexity

mUC
H (ε, δ) ≤ log(2|H|/δ)

2ε2

Furthermore, the class is agonostically PAC learnable using the ERM
algorithm with sample complexity

mH(ε, δ) ≤ mUC
H (ε/2, δ) ≤ 2log(2|H|/δ)

ε2

’H is finite’ is not necessary !
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An example: Infinite-size classes can be learnable

𝑎

− +

ℋ = {𝑇ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑙𝑖𝑛𝑒}

For any 𝜖, 𝛿, we need to find a function 𝑚ℋ(𝜖, 𝛿), such that when 𝑚 ≥

𝑚ℋ(𝜖, 𝛿), we have 𝐿𝐷(ℎ𝑠) ≤ 𝜖 with the probability of at least 1 − 𝛿, where

ℎ𝑠=argminℎ𝜖ℋ 𝐿𝑆 ℎ (ERM Learning)
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An example: Infinite-size classes can be learnable

𝑎∗𝑎0 𝑎1

𝜖 𝑚𝑎𝑠𝑠 𝜖 𝑚𝑎𝑠𝑠

ℙ𝑥~𝒟𝑥 𝑥 ∈ 𝑎0, 𝑎
∗ = ℙ𝑥~𝒟𝑥 𝑥 ∈ 𝑎∗, 𝑎1 = 𝜖

➢Proof: Let 𝑎∗ be a threshold such that ℎ∗ achieves 𝐿𝐷 ℎ∗ = 0.

− +

If ℙ𝑥~𝒟𝑥 𝑥 ∈ −∞, 𝑎∗ ≤ 𝜖, we set 𝑎0 = −∞.

If ℙ𝑥~𝒟𝑥 𝑥 ∈ 𝑎∗, +∞ ≤ 𝜖, we set 𝑎1 = +∞.

PS. 
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An example: Infinite-size classes can be learnable

− +
𝑏0 𝑏1

𝑆

ℎ𝑠=argminℎ𝜖ℋ 𝐿𝑆 ℎ (ERM Learning)

− +
𝑏0 𝑏1𝑆

𝑏0 < 𝑏𝑠 < 𝑏0
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An example: Infinite-size classes can be learnable

− +
𝑏0 𝑏1

𝑏𝑠

If 𝑏0 ≥ 𝑎0 and 𝑏1 ≤ 𝑎1

𝑎0 𝑎1

− +

𝑏𝑠
𝑎0 𝑎1

𝑎∗

𝜖 𝑚𝑎𝑠𝑠 𝜖 𝑚𝑎𝑠𝑠

− +

𝑏𝑠
𝑎0 𝑎1

𝑎∗

𝜖 𝑚𝑎𝑠𝑠 𝜖 𝑚𝑎𝑠𝑠

𝐿𝐷(ℎ𝑠) ≤ 𝜖 𝐿𝐷(ℎ𝑠) ≤ 𝜖
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An example: Infinite-size classes can be learnable

𝑏0 ≥ 𝑎0 and 𝑏1 ≤ 𝑎1

𝑏0 < 𝑎0 or 𝑏1 > 𝑎1

𝐿𝐷(ℎ𝑠) ≤ 𝜖⟹

𝐿𝐷 ℎ𝑠 > 𝜖 ⟹

the converse-negative proposition

ℙ𝑆~𝒟 𝐿𝐷 ℎ𝑠 > 𝜖 ≤ ℙ𝑆~𝒟 𝑏0 < 𝑎0 or 𝑏1 > 𝑎1

≤ ℙ𝑆~𝒟 𝑏0 < 𝑎0 + ℙ𝑆~𝒟 𝑏1 > 𝑎1

− +
𝑏0 𝑏1

𝑏𝑠𝑎0 𝑎1
𝑎∗
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An example: Infinite-size classes can be learnable

ℙ𝑆~𝒟 𝑏0 < 𝑎0 = ℙ𝑆~𝒟 ∀ (𝑥, 𝑦) ∈ 𝑆, 𝑥 ∉ (𝑎0, 𝑎
∗)

− +
𝑏0 𝑏1

𝑎0 𝑎1
𝑎∗

= (1 − 𝜖)𝑚≤ 𝑒−𝜖𝑚

ℙ𝑆~𝒟 𝑏1 > 𝑎1 = ℙ𝑆~𝒟 ∀(𝑥, 𝑦) ∈ 𝑆, 𝑥 ∉ (𝑎∗, 𝑎1)

= (1 − 𝜖)𝑚≤ 𝑒−𝜖𝑚

ℙ𝑆~𝒟 𝐿𝐷 ℎ𝑠 > 𝜖 ≤ ℙ𝑆~𝒟 𝑏0 < 𝑎0 or 𝑏1 > 𝑎1

≤ ℙ𝑆~𝒟 𝑏0 < 𝑎0 + ℙ𝑆~𝒟 𝑏1 > 𝑎1

≤ 2𝑒−𝜖𝑚

When 𝑚 > log 2/𝛿 /𝜖

ℙ𝑆~𝒟 𝐿𝐷 ℎ𝑠 > 𝜖 ≤ 𝛿
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A Question

What is the sufficient condition for learnability?

The VC-Dimension of H is finite!
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What is the VC-Dimension?

Before introducing the VC-dimension, we need to learn some definitions:
(Restriction H to C.) Let H be a class of functions from X to {0, 1}
and let C = {c1, c2, · · · , cm} ⊂ X . The restriction of H to C is the
set of functions from C to {0, 1} that can be derived from H. That is

HC = {(h(c1), h(c2), · · · , h(cm)) : h ∈ H}

where we represent each function from C to {0, 1} as a vector in
{0, 1}|C |.
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What is the VC-Dimension?

Before introducing the VC-dimension, we need to learn some definitions:
(Shattering.) A hypothesis class H shatters a finite set C ⊂ X if HC
is the set of all functions from C to {0, 1}. That is, |HC | = 2|C |.

𝑎

− +

ℋ = {𝑇ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑙𝑖𝑛𝑒}
1. 𝐶 = 𝑐1 √
2. 𝐶 = 𝑐1, 𝑐2 (𝑐1 < 𝑐2) ×
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What is the VC-Dimension?

(VC-Dimension.) The VC-Dimension of a hypothesis class H, denoted
VCdim(H), is the maximal size of a set C ⊂ X that can be shattered by
H. If H can shatter sets of arbitrarily large size we say that H has infinite
VC-Dimension.

The VC-Dimension is d :
- There exists a set of d points that can be shattered
- There is no set of d + 1 points that can be shattered
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Some examples for the VC-Dimension

Threshold Functions
Intervals
Axis Aligned Rectangles
The number of parameters
Finite Classes

𝑎

− +

−

+

𝑏𝑎

−

𝑎1 𝑎2

𝑏1

𝑏2
−
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The VC-Dimension & The number of parameters

H = {x 7→ sgn(sin(θx)) : θ ∈ R}
The number of parameters in H is 1, but VCdim(H)= ∞.
(Lemma) If 0.x1x2x3 · · · , is the binary expansion of x ∈ (0, 1), then
for any natural number m, sgn(sin(2mπx)) = (1 − xm).
For ∀d ∈ N, we construct a set of d points: (1) the label of ci is yi ;
(2) ci = 2−i(i = 1, 2, · · · , d). Set θ = π(

∑d
i=1(1 − yi)2i)

Yujia Liu The VC-Dimension 18
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Questions to be answered

Is ’finite VC-Dimension’ is a necessary and sufficient condition for the
PAC learnability?
Why we come to the VC-Dimension?
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Review

(No Free Lunch.)
Let H be a hypothesis class of functions from X to {0, 1}.
Assume there is a set C ⊂ X of size 2m that can be shattered by H. Let

S ⊂ C of size m be a training set.
Then, for any learning algorithm, A, there exist a distribution D over

X × {0, 1} and a predictor h ∈ H.
Such that LD(h) = 0 but with probability of at least 1/7 over the choice

of S ∼ D, we have that LD(A(S)) ≥ 1/8.
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PAC learnable ⇒ VCdim(H) is finite

Proof. VCdim(H) is infinite ⇒ H is not PAC learnable
Since H has an infinite VC-Dimension, for any training set size m, there
existed a shattered set of 2m, and the claim follows by No Free Lunch
Theorem (H is not learnable).
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VCdim(H) is finite ⇒ PAC learnable

Step 1: VCdim(H) is finite ⇒ τH(m) ≤
∑d

i=0
(m

i
)

Step 2: τH(m) ≤
∑d

i=0
(m

i
)
⇒ H has the uniform convergence

property
Step 3: H has the uniform convergence property ⇒ H is PAC
learnable
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Growth Function

The growth function measures the maximal ”effective” size of H on a set
of m examples.

(Growth Function.) Let H be a hypothesis class. Then the growth
function of H, denoted τH : N → N, is defined as:

τH(m) = max
C⊂X :|C |=m

|HC |
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Sauer’s Lemma

Let H be a hypothesis class with VCdim(H) = d < +∞. Then, for all
m ≥ d , τH(m) ≤

∑d
i=0

(m
i
)
. Furthermore, τH(m) ≤ (em/d)d .

|HC | = O(|C |d).
The size of HC grows polynomially rather than exponentially with |C |.
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Proof of Sauer’s Lemma

A claim: For any C = {c1, c2, · · · , cm}, we have

∀H, |HC | ≤ |B ⊂ C : H shatters B|

Proof: (the mathematical induction)
(1) When m = 1,X
(2) Suppose the inequality holds for sets of size k < m
(3) Prove the inequality holds for sets of size m.
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Proof of Sauer’s Lemma – Claim (3)

Fix H and C = {c1, c2, · · · , cm}. Denote C ′
= {c2, · · · , cm}. In addition,

define the following two sets:

Y0 = {(y2, y3, · · · , ym) : (0, y2, · · · , ym) ∈ HC∨(1, y2, · · · , ym) ∈ HC}

Y1 = {(y2, y3, · · · , ym) : (0, y2, · · · , ym) ∈ HC∧(1, y2, · · · , ym) ∈ HC}

We have:
(1) |HC | = |Y0|+ |Y1|
(2) Y0 = HC ′ . Moreover,

|Y0| = |HC ′ | ≤ |{B ⊂ C ′
: H shatters B}|

= |{B ⊂ C : c1 /∈ B ∧H shatters B}|
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Proof of Sauer’s Lemma – Claim (3)

C = {c1, c2, · · · , cm} and C ′
= {c2, · · · , cm}

Y0 = {(y2, y3, · · · , ym) : (0, y2, · · · , ym) ∈ HC∨(1, y2, · · · , ym) ∈ HC}

Y1 = {(y2, y3, · · · , ym) : (0, y2, · · · , ym) ∈ HC∧(1, y2, · · · , ym) ∈ HC}

Next, we define H′ ⊂ H to be

H′
={h ∈ H : ∃h′ ∈ H s.t.
(1 − h′

(c1), h
′
(c2), · · · , h

′
(cm)) = (h(c1), h(c2), · · · , h(cm))}

Then, it is obvious that Y1 = H′

C ′ . Moreover,

|Y1| = |H
′

C′ | ≤ |{B
′
⊂ C

′
: H

′
shatters B

′
}| = |{B

′
⊂ C

′
: H

′
shatters B

′
∪ c1}|

= |{B ⊂ C : c1 ∈ B ∧H
′

shatters B}|
≤ |{B ⊂ C : c1 ∈ B ∧H shatters B}|
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Proof of Sauer’s Lemma

Overall, we have shown that

|HC | = |Y0|+ |Y1|

≤ |{B ⊂ C : c1 /∈ B ∧H shatters B}|+ |{B ⊂ C : c1 ∈ B ∧H
′

shatters B}|
= |{B ⊂ C : H shatters B}|

If VCdim(H) ≤ d , then no set whose size is larger than d can be
shattered by H. Therefore

|{B ⊂ C : H shatters B}| ≤
d∑

i=0

(m
i
)
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VCdim(H) is finite ⇒ The uniform convergence

Theorem (6.11)
Let H be a class of hypothesis and let τH be its growth function. The loss
is 0-1 loss. Then, for every D and every δ ∈ (0, 1), with probability of at
least 1 − δ over the choice of S ∼ D we have

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m

Proof.

(1) ES∼D [sup
h∈H

|LD(h)− LS(h)|] ≤
4+

√
log(τH(2m))√

2m

(2) Markov’s inequality (Section B.1)
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VCdim(H) is finite ⇒ The uniform convergence

Sauer’s lemma: when m > d , we have τH(2m) ≤ (2em/d)d

Theorem 6.11: with probability of at least 1 − δ,

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m

Combining these two conclusions, we have,

|LD(h)− LS(h)| ≤
4 +

√
d log(2em/d)
δ
√

2m
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VCdim(H) is finite ⇒ The uniform convergence
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VCdim(H) is finite ⇒ The uniform convergence

Assume
√

d log(2em/d) ≥ 4,

|LD(h)− LS(h)| ≤
1
δ

√
2d log(2em/d)

m

To ensure the proceeding is at most ε, we need,

m ≥ 2d log(m)

(δε)2 +
2d log(2e/d)

(δε)2

(Lemma A.2 in Appendix A) There exists a function f (ε, δ) which is a
sufficient condition for the proceeding to hold
Finally, we can let mUC

H (ε, δ) = f (ε, δ). Then the uniform convergence
property of H is proved
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Conclude

(The Fundamental Theorem of Statistical Learning) Let the loss function
be the 0 − 1 loss.

ℋ has a finite VC-Dimension

Chapter 6

ℋ has the uniform convergence property

Chapter 4
Corollary 4.4

Any ERM rule is a successful agnostic PAC learner for ℋ

trivial

ℋ is agnostic PAC learnable

Any ERM rule is a successful PAC learner for ℋ

trivial

ℋ is PAC learnable

No free lunch

Chapter 28
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Conclude

(The Fundamental Theorem of Statistical Learning - Quantitative Version)
Let the loss function be the 0 − 1 loss. Assume VCdim(H) = d < +∞.
Then,

Uniform Convergence
Agnostic PAC 

Learnable
PAC Learnable

𝑚ℋ(𝜖, 𝛿) Θ(
𝑑 + 𝑙𝑜𝑔(1/𝛿)

𝜖2
) Θ(

𝑑 + 𝑙𝑜𝑔(1/𝛿)

𝜖2
) Ο(

𝑑 𝑙𝑜𝑔(1/𝜖) + 𝑙𝑜𝑔(1/𝛿)

𝜖2
)
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