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Abstract

Long-range dependencies can capture useful contextual
information to benefit visual understanding problems. In
this work, we propose a Criss-Cross Network (CCNet) for
obtaining such important information through a more effec-
tive and efficient way. Concretely, for each pixel, our CC-
Net can harvest the contextual information of its surround-
ing pixels on the criss-cross path through a novel criss-
cross attention module. By taking a further recurrent op-
eration, each pixel can finally capture the long-range de-
pendencies from all pixels. Overall, our CCNet is with
the following merits: 1) GPU memory friendly. Compared
with the non-local block, the recurrent criss-cross attention
module requires 11x less GPU memory usage. 2) High
computational efficiency. The recurrent criss-cross atten-
tion significantly reduces FLOPs by about 85% of the non-
local block in computing long-range dependencies. 3) The
state-of-the-art performance. We conduct extensive exper-
iments on popular semantic segmentation benchmarks in-
cluding Cityscapes, ADE20K, and instance segmentation
benchmark COCO. In particular, our CCNet achieves the
mloU score of 81.4 and 45.22 on Cityscapes test set and
ADE20K validation set, respectively, which are the new
state-of-the-art results. We make the code publicly available
at https://github.com/speedinghzl/CCNet.

1. Introduction

Semantic segmentation is a fundamental topic in com-
puter vision, whose goal is to assign semantic class labels
to every pixel in the image. It has been actively studied in
many recent papers and is also critical for various challeng-
ing applications such as autonomous driving, virtual reality,
and image editing.

Recently, state-of-the-art semantic segmentation frame-
works based on the fully convolutional network (FCN) [26]
have made remarkable progress. Due to the fixed geomet-
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Figure 1. Diagrams of two attention-based context aggregation
methods. (a) For each position (e.g. blue), Non-local module [32]
generates a dense attention map which has H x W weights (in
green). (b) For each position (e.g. blue), criss-cross attention mod-
ule generates a sparse attention map which only has H + W — 1
weights. After recurrent operation, each position (e.g. red) in the
final output feature maps can capture long-range dependencies
from all pixels. For clear display, residual connections are ignored.

ric structures, they are inherently limited to local receptive
fields and short-range contextual information. These limita-
tions impose a great adverse effect on FCN-based methods
due to insufficient contextual information.

To capture long-range dependencies, Chen et al. [6] pro-
posed atrous spatial pyramid pooling module with multi-
scale dilation convolutions for contextual information ag-
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gregation. Zhao et al. [42] further introduced PSPNet with
pyramid pooling module to capture contextual information.
However, the dilated convolution based methods [7, 6, 13]
collect information from a few surrounding pixels and can
not generate dense contextual information actually. Mean-
while, the pooling based methods [42, 40] aggregate con-
textual information in a non-adaptive manner and the ho-
mogeneous contextual information is adopted by all image
pixels, which does not satisfy the requirement the different
pixel needs the different contextual dependencies.

To generate dense and pixel-wise contextual informa-
tion, PSANet [43] learns to aggregate contextual infor-
mation for each position via a predicted attention map.
Non-local Networks [32] utilizes a self-attention mecha-
nism [10, 29], which enable a single feature from any posi-
tion to perceive features of all the other positions, leading
to generate more power pixel-wise representation. Here,
each position in the feature map is connected with all
other ones through self-adaptively predicted attention maps,
thus harvesting various range contextual information, see in
Fig. 1 (a). However, these attention-based methods need to
generate huge attention maps to measure the relationships
for each pixel-pair, whose complexity in time and space
are both O((H x W) x (H x W)), where H x W donates
the spatial dimension of input feature map. Since the in-
put feature map is always with high resolution in semantic
segmentation task, self-attention based methods have high
computation complexity and occupy a huge number of GPU
memory. We argue that: Is there an alternative solution to
achieve such a target in a more efficient way?

We found that the current no-local operation adopted
by [32] can be alternatively replaced by two consecutive
criss-cross operations, in which each one only has sparse
connections (H + W — 1) for each position in the feature
maps. This motivates us to propose the criss-cross atten-
tion module to aggregate long-range pixel-wise contextual
information in horizontal and vertical direction. By seri-
ally stacking two criss-cross attention modules, it can col-
lect contextual information from all pixels. The decompo-
sition greatly reduce the complexity in time and space from
O(HxW)x(HxW))to O(HxW)x(H +W —1)).

Concretely, our criss-cross attention module is able to
harvest various information nearby and far away on the
criss-cross path. As shown in Fig. 1, both non-local module,
and criss-cross attention module feed the input feature maps
with spatial size H x W to generate attention maps (upper
branch) and adapted feature maps (lower branch), respec-
tively. Then, the weighted sum is adopted as aggregation
way. In criss-cross attention module, each position (e.g.,
blue color) in the feature map is connected with other ones
which are in the same row and the same column through
predicted sparsely attention map. The predicted attention
map only has H+W —1 weights rather than  x W in non-

local module. Furthermore, we propose the recurrent criss-
cross attention module to capture the long-range dependen-
cies from all pixels. The local features are passed into
criss-cross attention module only once, which collects the
contextual information in horizontal and vertical directions.
The output feature map of a criss-cross attention module is
fed into the next criss-cross attention module; each position
(e.g. red color) in the second feature map collects informa-
tion from all others to augment the pixel-wise representa-
tions. All the criss-cross attention modules share parame-
ters for reducing extra parameters. Our criss-cross attention
module can be plugged into any fully convolutional neural
network, named CCNet, for leaning to segment in an end-
to-end manner.

We have carried out extensive experiments on large-scale
datasets. Our proposed CCNet achieves top performance
on two most competitive semantic segmentation datasets,
i.e., Cityscapes [1 1], and ADE20K [45]. Besides semantic
segmentation, the proposed criss-cross attention even im-
proves the state-of-the-art instance segmentation method,
i.e., Mask R-CNN with ResNet-101 [16]. The results show
that criss-cross attention is generally beneficial to the dense
prediction tasks. In summary, our main contributions are
two-fold:

e We propose a novel criss-cross attention module in this
work, which can be leveraged to capture contextual in-
formation from long-range dependencies in a more ef-
ficient and effective way.

e We propose a CCNet by taking advantages of two re-
current criss-cross attention modules, achieving lead-
ing performance on segmentation-based benchmarks,
including Cityscapes, ADE20K and MSCOCO.

2. Related work

Semantic segmentation The last years have seen a re-
newal of interest on semantic segmentation. FCN [26] is
the first approach to adopt fully convolution network for
semantic segmentation. Later, FCN-based methods have
made great progress in image semantic segmentation. Chen
et al. [5] and Yu et al. [38] removed the last two down-
sample layers to obtain dense prediction and utilized di-
lated convolutions to enlarge the receptive field. Unet [28],
Deeplabv3+ [9], RefineNet [21] and DFN [37] adopted
encoder-decoder structures that fuse the information in low-
level and high-level layers to predict segmentation mask.
SAC [41] and Deformable Convolutional Networks [12]
improved the standard convolution operator to handle the
deformation and various scale of objects. CRF-RNN [38]
and DPN [25] used Graph model i.e. CREMREF, for se-
mantic segmentation. AAF [19] used adversarial learning
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Figure 2. Overview of the proposed CCNet for semantic segmentation. The proposed recurrent criss-cross attention takes as input feature
maps H and output feature maps H” which obtain rich and dense contextual information from all pixels. Recurrent criss-cross attention
module can be unrolled into R = 2 loops, in which all Criss-Cross Attention module share parameters.

to capture and match the semantic relations between neigh-
boring pixels in the label space. BiSeNet [36] was designed
for real-time semantic segmentation.

In addition, some works aggregate the contex-
tual information to augment the feature representation.
Deeplabv2 [6] proposed ASPP module to use different
dilation convolutions to capture contextual information.
DenseASPP [35] brought dense connections into ASPP to
generate features with various scale. DPC [4] utilized archi-
tecture search techniques to build multi-scale architectures
for semantic segmentation. PSPNet [42] utilized pyramid
pooling to aggregate contextual information. GCN [27] uti-
lized global convolution module and ParseNet [24] utilized
global pooling to harvest context information for global rep-
resentations. Recently, Zhao et al. [43] proposed the point-
wise spatial attention network which uses predicted atten-
tion map to guide contextual information collection. Liu
et al. [23] and Visin et al. [30] utilized RNNs to capture
long-range contextual dependency information. conditional
random field (CRF) [2, 3, 5, 44], Markov random field
(MRF) [25] and recurrent neural network (RNN) [23] are
also utilized to capture long-range dependencies.

Attention model Attention model is widely used for var-
ious tasks. Squeeze-and-Excitation Networks [17] en-
hanced the representational power of the network by mod-
eling channel-wise relationships in an attention mechanism.
Chen et al. [8] made use of several attention masks to
fuse feature maps or predictions from different branches.
Vaswani et al. [29] applied a self-attention model on ma-
chine translation. Wang et al. [32] proposed the non-local
module to generate the huge attention map by calculating
the correlation matrix between each spatial point in the fea-
ture map, then the attention guided dense contextual infor-
mation aggregation. OCNet [39] and DANet [14] utilized
self-attention mechanism to harvest the contextual infor-

mation. PSA [43] learned an attention map to aggregate
contextual information for each individual point adaptively
and specifically. Our CCNet is different from the aforemen-
tioned studies to generate huge attention map to record the
relationship for each pixel-pair in feature map. The contex-
tual information is aggregated by criss-cross attention mod-
ule on the criss-cross path. Beside, CCNet can also obtain
dense contextual information in a recurrent fashion which
is more effective and efficient.

3. Approach

In this section, we give the details of the proposed Criss-
Cross Network (CCNet) for semantic segmentation. At
first, we will first present a general framework of our net-
work. Then, we will introduce criss-cross attention module
which captures long-range contextual information in hor-
izontal and vertical direction. At last, to capture the dense
and global contextual information, we propose the recurrent
criss-cross attention module.

3.1. Overall

The network architecture is given in Fig. 2. An input im-
age is passed through a deep convolutional neural networks
(DCNN), which is designed in a fully convolutional fash-
ion [6], then, produces a feature map X. We denote the
spatial size of X as H x W. In order to retain more de-
tails and efficiently produce dense feature maps, we remove
the last two down-sampling operations and employ dilation
convolutions in the subsequent convolutional layers, thus
enlarging the width/height of the output feature maps X to
1/8 of the input image.

After obtaining feature maps X, we first apply a con-
volution layer to obtain the feature maps H of dimension
reduction, then, the feature maps H would be fed into the
criss-cross attention (CCA) module and generate new fea-
ture maps H’ which aggregate long-range contextual infor-
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Figure 3. The details of criss-cross attention module.

mation together for each pixel in a criss-cross way. The
feature maps H' only aggregate the contextual information
in horizontal and vertical directions which are not power-
ful enough for semantic segmentation. To obtain richer and
denser context information, we feed the feature maps H’
into the criss-cross attention module again and output fea-
ture maps H”. Thus, each position in feature maps H”
actually gather the information from all pixels. Two criss-
cross attention modules before and after share the same pa-
rameters to avoid adding too many extra parameters. We
name this recurrent structure as recurrent criss-cross atten-
tion (RCCA) module.

Then we concatenate the dense contextual feature H”
with the local representation feature X. It is followed by
one or several convolutional layers with batch normaliza-
tion and activation for feature fusion. Finally, the fused fea-
tures are fed into the segmentation layer to generate the final
segmentation map.

3.2. Criss-Cross Attention

In order to model long-range contextual dependencies
over local feature representations using lightweight com-
putation and memory, we introduce a criss-cross attention
module. The criss-cross attention module collects contex-
tual information in horizontal and vertical directions to en-
hance pixel-wise representative capability.

As shown in Fig 3, given a local feature H €
the criss-cross attention module firstly applies two convolu-
tion layers with 1 x 1 filters on H to generate two feature
maps Q and K, respectively, where {Q, K} € R *WxH
(' is the channel number of feature maps, which is less than
C for dimension reduction.

After obtaining feature maps Q and K, we further gen-
erate attention maps A € REFW-)XWxH yia Affinity
operation. At each position u in spatial dimension of fea-
ture maps Q, we can get a vector Q, € RC'. Meanwhile,
we can obtain the set 2, by extracting feature vectors from
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Figure 4. An example of information propagation when the loop
number is 2.

K which are in the same row or column with position u.
Thus, 2, € REFW-1xC" Q. € RY is ith element of
;. The Affinity operation is defined as follows:

dz‘}u = Quﬂi,uT (1)

in which d;,, € D denotes the degree of correlation
between feature Q, and i 4, i@ = [1,...,|Qy]], D €
RHAW—1)xWxH Then, we apply a softmax layer on D
along the channel dimension to calculate the attention map
A.

Then another convolutional layer with 1 x 1 filters is ap-
plied on H to generate V. € RE*W*H for feature adap-
tion. At each position w in spatial dimension of feature
maps V, we can obtain a vector V, € RC and a set
&, € REAW-1)XC  The get d,, is collection of feature
vectors in V which are in the same row or column with po-
sition u. The long-range contextual information is collected
by the Aggregation operation:

H,= > Aju®iu+H, )
1€ Py

in which H/, denotes a feature vector in output feature maps
H ¢ REXWXH at position . A,y is a scalar value at
channel ¢ and position u in A. The contextual information
is added to local feature H to enhance the local features
and augment the pixel-wise representation. Therefore, it
has a wide contextual view and selectively aggregates con-
texts according to the spatial attention map. This feature
representations achieve mutual gains and are more robust
for semantic segmentation.

The proposed criss-cross attention module is a self-
contained module which can be dropped into a CNN ar-
chitecture at any point, and in any number, obtaining rich
contextual information. This module is very computation-
ally cheap and adds a few parameters, causing very little
GPU memory usage.



3.3. Recurrent Criss-Cross Attention

Despite a criss-cross attention module can capture long-
range contextual information in horizontal and vertical di-
rection, the connections between the pixel and around pixels
are still sparse. It is helpful to obtain dense contextual in-
formation for semantic segmentation. To achieve this, we
introduce the recurrent criss-cross attention based on the
criss-cross attention module described above. The recurrent
criss-cross attention module can be unrolled into R loops.
In the first loop, the criss-cross attention module takes as
input feature maps H extracted from a CNN model and
output feature maps H’, where H and H’ have the same
shape. In the second loop, the criss-cross attention module
takes as input feature maps H’ and output feature maps H” .
As shown in Fig. 2, recurrent criss-cross attention module
has two loops (R=2) which is enough to harvest long-range
dependencies from all pixels to generate new feature maps
with dense and rich contextual information.

The A and A’ are donated as the attention maps in loop
1 and loop 2, respectively. Since we are interested only in
contextual information spreads in spatial dimension rather
than in channel dimension, the convolutional layer with 1 x
1 filters can be view as identical connection. In addition,
the mapping function from position z’,y’ to weight A4, , ,
is defined as A; ,, = f(A,z,y,2’,y’). For any position
u at feature map H” and any position 6 at feature map H,
there is a connection if R = 2. One case is that » and 6 are
in the same row or column:

Hy < [f(A,u,0)+1]- f(A,u,0) - Hy 3)

in which < donates add-to operation. Another case is that
u and 6 are not in the same row and column. Fig 4 shows
the propagation path of context information in spatial di-
mension:

Hﬁ <~ [f(Aa Uwagya'g;caey) : f(A/7u$7U’yau1‘59y)+
(A, 0p,uy,05,0y) - f(A  ug, uy, 05, u,)] - Hy (4)

In general, our recurrent criss-cross attention module
makes up for the deficiency of criss-cross attention module
that cannot obtain the dense contextual information from all
pixels. Compared with criss-cross attention module, the re-
current criss-cross attention module (R = 2) does not bring
extra parameters and can achieve better performance with
the cost of minor computation increment. The recurrent
criss-cross attention module is also a self-contained mod-
ule that can be plugged into any CNN architecture at any
stage and be optimized in an end-to-end manner.

4. Experiments

To evaluate the proposed method, we carry out com-
prehensive experiments on Cityscapes dataset, ADE20K

dataset, and COCO dataset. Experimental results demon-
strate that CCNet achieves state-of-the-art performance on
Cityscapes and ADE20K. Meanwhile, CCNet can bring
constant gain on COCO for instance segmentation. In the
following subsections, we first introduce the datasets and
implementation details, then we perform a series of abla-
tion experiments on Cityscapes dataset. Finally, we report
our results on ADE20K and COCO dataset.

4.1. Datasets and Evaluation Metrics

We adopt Mean IoU (mean of class-wise intersection
over union) for Cityscapes and ADE20K and standard
COCO metrics Average Precision (AP) for COCO.

o Cityscapes is tasked for urban segmentation, which
contains 5,000 high quality pixel-level finely annotated
images and 20,000 coarsely annotated images captured
from 50 different cities. Each image is with 1024 x
2048 resolution, which has 19 classes for semantic seg-
mentation evaluation. Only the 5,000 finely annotated
images are used in our experiments and are divided
into 2,975/500/1,525 images for training, validation,
and testing.

o ADE20K is a recent scene parsing benchmark contain-
ing dense labels of 150 stuff/object categories. The
dataset includes 20K/2K/3K images for training, vali-
dation and test.

e COCO is a very challenging dataset that contains
115K images over 80 categories for training, SK for
validation and 20k for testing.

4.2. Implementation Details

Network Structure We implement our method based on
open source pytorch segmentation toolbox [18]. For se-
mantic segmentation, we choose the ImageNet pre-trained
ResNet-101 [16] as our backbone and remove the last two
down-sampling operations and employ dilated convolutions
in the subsequent convolutional layers following the previ-
ous works [5], the output stride becomes 8. Meanwhile, we
replace the standard Batchnorm with InPlace-ABN [1] to
the mean and standard-deviation of BatchNorm across mul-
tiple GPUs. For instance segmentation, we choose Mask-
RCNN [15] as our baseline.

Training settings The SGD with mini-batch is used for
training. For semantic segmentation, the initial learning
rate is le-2 for Cityscapes and ADE20K. Following prior
works [0, 40], we employ a poly learning rate policy where
the initial learning rate is multiplied by 1 — (%)power
with power = 0.9. We use the momentum of 0.9 and a
weight decay of 0.0001. For Cityscapes, the training im-

ages are augmented by randomly scaling (from 0.75 to 2.0),



Table 1. Comparison with state-of-the-arts on Cityscapes valida-
tion set.

Table 2. Cityscapes test set performance across leading competi-
tive models.

Method Backbone | multi-scale | mIOU(%) Method Backbone mIOU(%)
DeepLabv3 [7] | ResNet-101 Yes 79.3 DeepLab-v2 [6] ResNet-101 70.4
DeepLabv3+ [9] | Xception-65 No 79.1 RefineNet [21] T ResNet-101 73.6
DPC [4] { Xception-71 No 80.8 SAC [41]% ResNet-101 78.1
CCNet ResNet-101 Yes 81.3 GCN [27] % ResNet-101 76.9
1 use extra COCO dataset for training. DUC[31]% ResNet-101 71.6
ResNet-38 [33] WiderResnet-38 78.4
) . ) PSPNet [42] ResNet-101 78.4
then randomly cropping out the high-resolution patches ]
(769 x 769) from the resulting images. Since the images BiSeNet [30] ResNet-101 789
from ADE20K are with various sizes, we adopt an augmen- AAF[19] ¢ ResNet-101 79.1
tation strategy of resizing the short side of input image to PSANet [43] ResNet-101 80.1
the length randomly chosen from the set {300, 375, 450, DEN ResNet-101 793
525, 600}. In addition, we also apply random flipping hori- L5714 esNet- ’
zontally for data augmentation. We employ 4 x TITAN XP DenseASPP [35] 1 DenseNet-161 80.6
GPU s for training and batch size is 8. For instance segmen- CCNet t ResNet-101 81.4

tation, we take the same training settings as that of Mask-
RCNN [15].

4.3. Experiments on Cityscapes

4.3.1 Comparisons with state-of-the-arts

Results of other state-of-the-art semantic segmentation so-
lutions on cityscapes validation set are summarized in
Tab. 1. We provide these results for reference and em-
phasize that they should not be directly compared with our
method. Among the approaches, Deeplabv3 [7] and CC-
Net uses the same backbone and multi-scale testing strategy.
Deeplabv3+ [9] and DPC [4] use more stronger backbone.
In particular, DPC [4] make use of COCO dataset for train-
ing rather Cityscapes training set. The results show that the
proposed CCNet with multi-scale testing achieves the new
state-of-the-art performance.

In addition, we also train the best learned CCNet with
ResNet-101 [16] as the backbone using both training and
validation sets and make the evaluation on the test set by
submitting our test results to the official evaluation server.
Most of methods [0, 21, 41,27,31,42,36, 19,43, 37] adopt
the same backbone as ours and the others [33, 35] utilize
stronger backbones. From Tab. 2, it can be observed that
our CCNet substantially outperforms all the previous tech-
niques. Among the approaches, PSANet [43] is most re-
lated to our method which generates sub attention map for
each pixel. One of the differences is that the sub attention
map has 2 x H x W weights in PSANetand H + W — 1
weights in CCNet. Our method can achieve better perfor-
mance with low computation cost and low memory usage.

1 train with both the train-fine and val-fine datasets.

4.3.2 Ablation studies

To further prove the effectiveness of the CCNet, we con-
duct extensive ablation experiments on the validation set of
Cityscapes with different settings for CCNet.

The effect of attention module Tab. 3 demonstrates the
performance on Cityscapes validation set by adopting dif-
ferent number of recurrent criss-cross attention module
(RCCA). All experiments are conducted using Resnet-101
as the backbone. Beside, the input size of image is 769 x
769, resulting in the size of input feature map H of RCCA
is 97 x 97. Our baseline network is ResNet-based FCN
with dilated convolution module incorporated at stage 4 and
5, i.e., dilations are set to 2 and 4 for these two stages re-
spectively. The increment of FLOPs and Memory usage are
estimated when R = 1,2, 3, respectively. We can observe
that adding a criss-cross attention into the baseline, donated
as R = 1, improves the performance by 2.9% compared
with the baseline, which can effectively demonstrate the sig-
nificance of criss-cross attention module. Furthermore, in-
creasing loops from 1 to 2 can improve the performance by
1.8%, demonstrating the effectiveness of dense contextual
information. Finally, increasing loops from 2 to 3 slightly
improves the performance by 0.4%. Meanwhile, with the
increasing of loops, the usage of FLOPs and GPU memory
will still be increased. These results prove that the proposed
criss-cross attention module can significantly improve the
performance by capturing long-range contextual informa-
tion in horizontal and vertical direction. In addition, the
proposed criss-cross attention is effective in capturing the
dense and global contextual information, which can finally



Baseline

Image

1

R=2 Ground Truth

Figure 5. Visualization results of RCCA with different loops on Cityscapes validation set.

benefit the performance of semantic segmentation. To bal-
ance the performance and resource usage, we choose R = 2
as default settings in all the following experiments.

We provide the qualitative comparisons in Fig. 5 to fur-
ther validate the effectiveness of the criss-cross module. We
leverage the white circles to indicate those challenging re-
gions that are easily to be misclassified. We can observe
that these challenging regions are progressively corrected
with the increasing of loops, which can well prove the ef-
fectiveness of dense contextual information aggregation for
semantic segmentation.

Comparison of context aggregation approaches We com-
pare the performance of several different context aggre-
gation approaches on the Cityscapes validation set with
Resnet-50 and Resnet-101 as backbones. It should be noted
that we do not provide the result of “Resnet-101 + NL”,
because we can not run the experiment that integrates non-
local block into Resnet-101 backbone due to the limitation
of 12G GPU memory.

Specifically, the baselines of context aggregation mainly
include: 1) Zhao et al. [42] proposed Pyramid pooling
which is the simple and effective way to capture global con-
textual information, donated as “+PP”’; 2) Chen et al. [7]
used different dilation convolutions to harvest pixel-wise
contextual information at the different range, donated as
“+ASPP”; 3) Wang et al. [32] introduced non-local network
whose attention mask for each position is generated by cal-
culating the feature correlation between each pixel-pair to
guide context aggregation, donated as “+NL”.

In Tab. 4, Both “+NL” and “+RCCA” achieve better per-
formance compared with other the context aggregation ap-
proaches, which demonstrates the importance of capturing
dense long-range contextual information. More interest-
ingly, our method achieves better performance than “+NL”
which can also form dense long-range contextual informa-
tion. One cause may be that the attention map plays a key

role for contextual information aggregation. “+NL” gen-
erates an attention map from the feature which has limit
receptive field and short range contextual information, but
our “+RCCA” takes two steps to form dense contextual in-
formation, leading to that the latter step can learn a better
attention map benefiting from the feature map produced by
the first step in which some long rage contextual informa-
tion has already been embedded.

We further explore the amount of computation and mem-
ory footprint of RCCA. As shown in Table 5, compared
with “+NL” method, the proposed “+RCCA” requires 11x
less GPU memory usage and significantly reduce FLOPs by
about 85% of non-local block in computing long-range de-
pendencies, which shows that the CCNet is an efficient way
to capture long-range contextual information in the least
amount of computation and memory footprint.

Visualization of Attention Map To get a deeper under-
standing of our RCCA, we visualize the learned attention
masks as shown in Fig. 6. For each input image, we select
one point (green cross) and show its corresponding attention
maps when R = 1 and R = 2 in columns 2 and 3 respec-
tively. From Fig. 6, only contextual information from the
criss-cross path of the target point is capture when R = 1.
By adopting one more criss-cross module, i.e., R = 2 the
RCCA can finally aggregate denser and richer contextual
information compared with that of R = 1. Besides, we
observe that the attention module could capture semantic
similarity and long-range dependencies.

4.4. Experiments on ADE20K

In this subsection, we conduct experiments on the
AED20K dataset, which is very challenging segmenta-
tion dataset for both indoor and outdoor scene parsing, to
validate the effectiveness of our method. As shown in
Tab. 6, the CCNet achieves the state-of-the-art performance
of 45.22%, outperforms the previous state-of-the-art meth-
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Figure 6. Visualization results of attention module on Cityscapes
validation set. The left column is the images from the validation
set of Cityscapes, the 2 and 3 columns are pixel-wise attention
maps when R = 1 and R = 2 in RCCA. The last column is
ground truth.

Table 3. Performance on Cityscapes validation set for different
loops in RCCA. FLOPs and Memory usage are estimated for an
inputof 1 X 3 x 769 x 769.

Table 6. State-of-the-art Comparison experiments on ADE20K
validation set.

Method Backbone mlIOU(%)
RefineNet [21] ResNet-152 40.70
SAC [41] ResNet-101 44.30
PSPNet [42] ResNet-101 43.29
PSANet [43] ResNet-101 43.77
DSSPN [20] ResNet-101 43.68
UperNet [34] ResNet-101 42.66
EncNet [40] ResNet-101 44.65
CCNet ResNet-101 45.22

Table 7. Results of object detection and instance segmentation on
COCO.

Loops GFLOPs(A) | Memory(MA) | mIOU(%)
baseline 0 0 75.1
R=1 8.3 53 78.0
R=2 16.5 127 79.8
R=3 24.7 208 80.2

Table 4. Comparison of context aggregation approaches on
Cityscapes validation set.

Method mIOU(%)
ResNet50-Baseline 73.3
ResNet50+PSP 76.4
ResNet50+ASPP 77.1
ResNet50+NL 77.3
ResNet50+RCCA(R=2) 78.5
ResNet101-Baseline 75.1
ResNet101+PSP 78.5
ResNet101+ASPP 78.9
ResNet101+RCCA(R=2) 79.8

Table 5. Comparison of Non-local module and RCCA. FLOPs and
Memory usage are estimated for an input of 1 X 3 X 769 x 769.

Method GFLOPs(A) | Memory(MA) | mIOU(%)
baseline 0 0 73.3
+NL 108 1411 77.3
+RCCA(R=2) 16.5 127 78.5

ods by more than 0.6%. Among the approaches, most of
methods [41, 42, 43, 20, 34, 40] adopt the ResNet-101
as backbone and RefineNet [21] adopts a more powerful
network, i.e., ResNet-152, as the backbone. EncNet [40]

Method Apbor Apmask
baseline 38.2 34.8
R50 +NL 39.0 35.5
+RCCA 39.3 36.1
baseline 40.1 36.2
R101 +NL 40.8 37.1
+RCCA 41.0 37.3

achieves previous best performance among the methods and
utilizes global pooling with image-level supervision to col-
lect image-level context information. In contrast, our CC-
Net adopts an alternative way to integrate contextual infor-
mation by capture pixel-wise long-range dependencies and
achieve better performance.

4.5. Experiments on COCO

To further demonstrate the generality of our CCNet, We
conduct the instance segmentaion task on COCO [22] using
the competitive Mask R-CNN model [15] as the baseline.
Following [32], we modify the Mask R-CNN backbone by
adding the RCCA module right before the last convolutional
residual block of res4. We evaluate a standard baseline of
ResNet-50/101. All models are fine-tuned from ImageNet
pre-training. We use open source implementation' with end-
to-end joint training whose performance is almost the same
as the baseline reported in [32]. We report the compar-
isons in terms of box AP and mask AP in Tab. 7 on COCO.
The results demonstrate that our method substantially out-
performs the baseline in all metrics. Meanwhile, the net-
work with “+RCCA” also achieve the better performance
than the network with one non-local block “+NL”.

Ihttps://github.com/facebookresearch/
maskrcnn-benchmark
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5. Conclusion and future work

In this paper, we have presented a Criss-Cross Network
(CCNet) for semantic segmentation, which adaptively cap-
tures long-range contextual information on the criss-cross
path. To obtain dense contextual information, we intro-
duce recurrent criss-cross attention module which aggre-

gates contextual information from all pixels.

The abla-

tion experiments demonstrate that recurrent criss-cross at-
tention captures dense long-range contextual information in
less computation cost and less memory cost. Our CCNet
achieves outstanding performance consistently on two se-
mantic segmentation datasets, i.e. Cityscapes, ADE20K and
instance segmentation dataset, i.e. COCO.
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