
Eigen-Distortions of Hierarchical Representations

Alexander Berardino
Center for Neural Science

New York University
agb313@nyu.edu

Johannes Ballé
Center for Neural Science

New York University∗
johannes.balle@nyu.edu

Valero Laparra
Image Processing Laboratory

Universitat de València
valero.laparra@uv.es

Eero Simoncelli
Howard Hughes Medical Institute,

Center for Neural Science and
Courant Institute of Mathematical Sciences

New York University
eero.simoncelli@nyu.edu

Abstract

We develop a method for comparing hierarchical image representations in terms
of their ability to explain perceptual sensitivity in humans. Specifically, we utilize
Fisher information to establish a model-derived prediction of sensitivity to local
perturbations of an image. For a given image, we compute the eigenvectors of the
Fisher information matrix with largest and smallest eigenvalues, corresponding to
the model-predicted most- and least-noticeable image distortions, respectively. For
human subjects, we then measure the amount of each distortion that can be reliably
detected when added to the image, and compare these thresholds to the predictions
of the corresponding model. We use this method to test the ability of a variety of
representations to mimic human perceptual sensitivity. We find that the early layers
of VGG16, a deep neural network optimized for object recognition, provide a better
match to human perception than later layers, and a better match than a 4-stage
convolutional neural network (CNN) trained on a database of human ratings of
distorted image quality. On the other hand, we find that simple models of early
visual processing, incorporating one or more stages of local gain control, trained
on the same database of distortion ratings, provide substantially better predictions
of human sensitivity than both the CNN and all layers of VGG16.

Human capabilities for recognizing complex visual patterns are believed to arise through a cascade
of transformations, implemented by neurons in successive stages in the visual system. Several
recent studies have suggested that representations of deep convolutional neural networks trained
for object recognition can predict activity in areas of the primate ventral visual stream better than
models constructed explicitly for that purpose (Yamins et al. [2014], Khaligh-Razavi and Kriegeskorte
[2014]). These results have inspired exploration of deep networks trained on object recognition as
models of human perception, explicitly employing their representations as perceptual metrics or loss
functions (Hénaff and Simoncelli [2016], Johnson et al. [2016], Dosovitskiy and Brox [2016]).

On the other hand, several other studies have used synthesis techniques to generate images that
indicate a profound mismatch between the sensitivity of these networks and that of human observers.
Specifically, Szegedy et al. [2013] constructed image distortions, imperceptible to humans, that
cause their networks to grossly misclassify objects. Similarly, Nguyen and Clune [2015] optimized
randomly initialized images to achieve reliable recognition from a network, but found that the
resulting ‘fooling images’ were uninterpretable by human viewers. Simpler networks, designed
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for texture classification and constrained to mimic the early visual system, do not exhibit such
failures (Portilla and Simoncelli [2000]). These results have prompted efforts to understand why
generalization failures of this type are so consistent across deep network architectures, and to develop
more robust training methods to defend networks against attacks designed to exploit these weaknesses
(Goodfellow et al. [2014]).

From the perspective of modeling human perception, these synthesis failures suggest that representa-
tional spaces within deep neural networks deviate significantly from that of humans, and that methods
for comparing representational similarity, based on fixed object classes and discrete sampling of
the representational space, may be insufficient to expose these failures. If we are going to use such
networks as models for human perception, we need better methods of comparing model representa-
tions to human vision. Recent work has analyzed deep networks’ robustness to visual distortions on
classification tasks, as well as the similarity of classification errors that humans and deep networks
make in the presence of the same kind of distortion (Dodge and Karam [2017]).

Here, we aim to accomplish something in the same spirit, but rather than testing on a set of hand-
selected examples, we develop a model-constrained synthesis method for generating targeted test
stimuli that can be used to compare the layer-wise representational sensitivity of a model to human
perceptual sensitivity. Utilizing Fisher information, we isolate the model-predicted most and least
noticeable changes to an image. We test the quality of these predictions by determining how well
human observers can discriminate these same changes. We test the power of this method on six layers
of VGG16 (Simonyan and Zisserman [2015]), a deep convolutional neural network (CNN) trained to
classify objects. We also compare these results to those derived from models explicitly trained to
predict human sensitivity to image distortions, including both a 4-stage generic CNN, a fine-tuned
version of VGG16, and a family of highly-structured models explicitly constructed to mimic the
physiology of the early human visual system. Example images from the paper, as well as additional
examples, can be found online at http://www.cns.nyu.edu/~lcv/eigendistortions/.

1 Predicting discrimination thresholds

Suppose we have a model for human visual representation, defined by conditional density p(~r|~x),
where ~x is an N -dimensional vector containing the image pixels, and ~r is an M -dimensional random
vector representing responses internal to the visual system. If the image is modified by the addition
of a distortion vector, ~x + αû, where û is a unit vector, and scalar α controls the amplitude of
distortion, the model can be used to predict the threshold at which the distorted image can be
reliably distinguished from the original image. Specifically, one can express a lower bound on the
discrimination threshold in direction û for any observer or model that bases its judgments on ~r (Seriès
et al. [2009]):

T (û; ~x) ≥ β
√
ûTJ−1[~x]û (1)

where β is a scale factor that depends on the noise amplitude of the internal representation (as well as
experimental conditions, when measuring discrimination thresholds of human observers), and J [~x] is
the Fisher information matrix (FIM; Fisher [1925]), a second-order expansion of the log likelihood:

J [~x] = E~r|~x
[( ∂
∂~x

log p(~r|~x)
)( ∂

∂~x
log p(~r|~x)

)T]
(2)

Here, we restrict ourselves to models that can be expressed as a deterministic (and differentiable)
mapping from the input pixels to mean output response vector, f(~x), with additive white Gaussian
noise in the response space. The log likelihood in this case reduces to a quadratic form:

log p(~r|~x) = −1

2

(
[~r − f(~x)]T [~r − f(~x)]

)
+ const.

Substituting this into Eq. (2) gives:

J [~x] =
∂f

∂~x

T ∂f

∂~x

Thus, for these models, the Fisher information matrix induces a locally adaptive Euclidean metric on
the space of images, as specified by the Jacobian matrix, ∂f/∂~x.
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Figure 1: Measuring and comparing model-derived predictions of image discriminability. Two models
are applied to an image (depicted as a point ~x in the space of pixel values), producing response vectors
~rA and ~rB . Responses are assumed to be stochastic, and drawn from known distributions p(~rA|~x)
and p(~rB |~x). The Fisher Information Matrices (FIM) of the models, JA[~x] and JB [~x], provide a
quadratic approximation of the discriminability of distortions relative to an image (rightmost plot,
colored ellipses). The extremal eigenvalues and eigenvectors of the FIMs (directions indicated by
colored lines) provide predictions of the most and least visible distortions. We test these predictions
by measuring human discriminability in these directions (colored points). In this example, the ratio
of discriminability along the extremal eigenvectors is larger for model A than for model B, indicating
that model A provides a better description of human perception of distortions (for this image).

1.1 Extremal eigen-distortions

The FIM is generally too large to be stored in memory or inverted. Even if we could store and invert
it, the high dimensionality of input (pixel) space renders the set of possible distortions too large to
test experimentally. We resolve both of these issues by restricting our consideration to the most-
and least-noticeable distortion directions, corresponding to the eigenvectors of J [~x] with largest and
smallest eigenvalues, respectively. First, note that if a distortion direction ê is an eigenvector of J [~x]
with associated eigenvalue λ, then it is also an eigenvector of J−1[~x] (with eigenvalue 1/λ), since
the FIM is symmetric and positive semi-definite. In this case, Eq. (1) becomes

T (ê; ~x) ≥ β/
√
λ

That is, the predicted discrimination threshold in the direction of an eigenvector is inversely propor-
tional to the square root of its associated eigenvalue, and the ratio of discrimination thresholds along
two different eigenvectors is the square root of the ratio of their associated eigenvalues. If human
discrimination thresholds attain the bound of Eq. (1), or are a constant multiple above it, the strongest
prediction arising from a given model is the ratio of the extremal (maximal and minimal) eigenvalues
of its FIM, which can be compared to the ratio of human discrimination thresholds for distortions in
the directions of the corresponding extremal eigenvectors (Fig. 1).

Although the FIM cannot be stored, it is straightforward to compute its product with an input vector
(i.e., an image). Using this operation, we can solve for the extremal eigenvectors using the well-
known power iteration method (von Mises and Pollaczek-Geiringer [1929]). Specifically, to obtain the
maximal eigenvalue of a given function and its associated eigenvector (λm and êm, respectively), we
start with a vector consisting of white noise, ê(0)m , and then iteratively apply the FIM, renormalizing
the resulting vector, until convergence:

λ (k+1)
m =

∥∥∥J [~x]ê (k)
m

∥∥∥ ; ê (k+1)
m = J [~x]ê (k)

m /λ(k+1)
m

To obtain the minimal eigenvector, êl, we perform a second iteration using the FIM with the maximal
eigenvalue subtracted from the diagonal:

λ
(k+1)
l =

∥∥∥(J [~x]− λmI) ê (k)
l

∥∥∥ ; ê
(k+1)
l = (J [~x]− λmI) ê (k)

l /λ
(k+1)
l
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1.2 Measuring human discrimination thresholds

For each model under consideration, we synthesized extremal eigen-distortions for 6 images from
the Kodak image set2. We then estimated human thresholds for detecting these distortions using a
two-alternative forced-choice task. On each trial, subjects were shown (for one second each, and in
randomized order) a photographic image, ~x, and the same image distorted using one of the extremal
eigenvectors, ~x+αê, and then asked to indicate which image appeared more distorted. This procedure
was repeated for 120 trials for each distortion vector, ê, over a range of α values, with ordering chosen
by a standard psychophysical staircase procedure. The proportion of correct responses, as a function
of α, was fit with a cumulative Gaussian function, and the subject’s detection threshold, Ts(ê; ~x) was
estimated as the point on this function where the subject could distinguish the distorted image 75%
of the time. We computed the natural logarithm of the ratio of these discrimination thresholds for
the minimal and maximal eigenvectors, and averaged this over images (indexed by i) and subjects
(indexed by s):

D(f) =
1

S

1

I

S∑

s=1

I∑

i=1

log ‖Ts(êli; ~xi)/Ts(êmi; ~xi)‖

where Ts indicates the threshold measured for human subject s. D(f) provides a measure of a model’s
ability to predict human performance with respect to distortion detection: the ratio of thresholds for
model-generated extremal distortions will be highest when the model is most similar to the human
subjects (Fig. 1).

2 Probing representational sensitivity of VGG16 layers
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Figure 2: Top: Average log-thresholds
for detection of the least-noticeable
(red) and most-noticeable (blue) eigen-
distortions derived from layers within
VGG16 (10 Human observers), and a
baseline model (MSE) for which pre-
dicted distortions in all directions are
equally visible.

We begin by examining discrimination predictions derived
from the deep convolutional network known as VGG16. In
their paper, Johnson et al. [2016] trained a neural network
to generate super-resolution images using the representa-
tion of an intermediate layer of VGG16 as a perceptual
loss function, and showed that the images this network
produced looked significantly better than images gener-
ated with simpler loss functions (e.g. pixel-domain mean
squared error). Hénaff and Simoncelli [2016] used VGG16
as an image metric to synthesize minimal length paths
(geodesics) between images modified by simple global
transformations (rotation, dilation, etc.). The authors
found that a modified version of the network produced
geodesics that captured these global transformations well
(as measured perceptually), especially in deeper layers.
Implicit in both of these studies, and others like them (e.g.,
Dosovitskiy and Brox [2016]), is the idea that training a
deep neural network to recognize objects may result in
a network with other human perceptual qualities. Here,
we compare VGG16’s sensitivity to distortions directly
to human perceptual sensitivity to the same distortions.
We transformed luminance-valued images and distortion
vectors to proper inputs for VGG16 following the preprocessing steps described in the original paper,
and verified that our implementation replicated the published object recognition results. For human
perceptual measurements, all images were transformed to produce the same luminance values on our
calibrated display as those assumed by the model.

We computed eigen-distortions of VGG16 at 6 different layers: the rectified convolutional layer
immediately prior to the first max-pooling operation (Front), as well as each subsequent layer
following a pooling operation (Layer2–Layer6). A subset of these are shown, both in isolation and
superimposed on the image from which they were derived, in Fig. 3. Note that the detectability of
these distortions in isolation is not necessarily indicative of their detectability when superimposed on
the underlying image, as measured in our experiments. We compared all of these predictions to a

2Downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html.
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Most-noticeable eigen-distortions
4êm Front Layer 3 Layer 5

Image X

Least-noticeable eigen-distortions
30êl Front Layer 3 Layer 5

Image X

Figure 3: Eigen-distortions derived from three layers of the VGG16 network for an example image.
Images are best viewed in a display with luminance range from 5 to 300 cd/m2 and a γ exponent
of 2.4. Top: Most-noticeable eigen-distortions. All distortion image intensities are scaled by the
same amount (×4). Second row: Original image (~x), and sum of this image with each of the eigen-
distortions. Third and fourth rows: Same, for the least-noticeable eigen-distortions. Distortion
image intensities are scaled the same (×30).

baseline model (MSE), where the image transformation, f(~x), is replaced by the identity matrix. For
this model, every distortion direction is equally discriminable.

Human detection thresholds are summarized in Fig. 2, and indicate that all layers surpassed the
baseline model in at least one of their predictions. Additionally, the early layers of VGG16 (in
particular, Front and Layer3) are better predictors of human sensitivity than the deeper layers
(Layer4, Layer5, Layer6). Specifically, the most noticeable eigen-distortions from representations
within VGG16 become more discriminable with depth, but so generally do the least-noticeable
eigen-distortions. This discrepancy could arise from overlearned invariances, or invariances induced
by network architecture (e.g. layer 6, the first stage in the network where the number of output
coefficients falls below the number of input pixels, is an under-complete representation). Notably,
including the "L2 pooling" modification of Hénaff and Simoncelli [2016] did not significantly modify
the eigen-distortions synthesized from VGG16 (data not shown).

3 Probing representational similarity of IQA-optimized models

The results above suggest that training a neural network to recognize objects imparts some ability to
predict human sensitivity to distortions. However, we find that deeper layers of the network produce
worse predictions than shallower layers. This could be a result of the mismatched training objective
function (object recognition) or the particular architecture of the network. Since we clearly cannot
probe the entire space of networks that achieve good results on object recognition, we aim instead to
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Convolution, 5x5 filters 

Downsampling 2x2, batch normalization, rectification

Figure 4: Architecture of a 4-layer Convolutional Neural Network (CNN). Each layer consists of a
convolution, downsampling, and a rectifying nonlinearity (see text). The network was trained, using
batch normalization, to maximize correlation with the TID-2008 database of human image distortion
sensitivity.

probe a more general form of the latter question. Specifically, we train multiple models of differing
architecture to predict human image quality ratings, and test their ability to generalize by measuring
human sensitivity to their eigen-distortions.

We constructed a generic 4-layer convolutional neural network (CNN, 436908 parameters - Fig.
4). Within this network, each layer applies a bank of 5× 5 convolution filters to the outputs of the
previous layer (or, for the first layer, the input image). The convolution responses are subsampled
by a factor of 2 along each spatial dimension (the number of filters at each layer is increased by
the same factor to maintain a complete representation at each stage). Following each convolution,
we employ batch normalization, in which all responses are divided by the standard deviation taken
over all spatial positions and all layers, and over a batch of input images (Ioffe and Szegedy [2015]).
Finally, outputs are rectified with a softplus nonlinearity, log(1 + exp(x)). After training, the batch
normalization factors are fixed to the global mean and variance across the entire training set.

LN

LG

LGG

On-Off

Figure 5: Architecture of our LGN
model (On-Off), and several reduced
models (LGG, LG, and LN). Each model
was trained to maximize correlation with
the TID-2008 database of human image
distortion sensitivity.

We compare our generic CNN to a model reflecting the
structure and computations of the Lateral Geniculate Nu-
cleus (LGN), the visual relay center of the Thalamus. Pre-
vious results indicate that such models can successfully
mimic human judgments of image quality (Laparra et al.
[2017]). The full model (On-Off), is constructed from a
cascade of linear filtering, and nonlinear computational
modules (local gain control and rectification). The first
stage decomposes the image into two separate channels.
Within each channel, the image is filtered by a difference-
of-Gaussians (DoG) filter (2 parameters, controlling spa-
tial size of the Gaussians - DoG filters in On and Off
channels are assumed to be of opposite sign). Following
this linear stage, the outputs are normalized by two se-
quential stages of gain control, a known property of LGN
neurons (Mante et al. [2008]). Filter outputs are first nor-
malized by a local measure of luminance (2 parameters,
controlling filter size and amplitude), and subsequently
by a local measure of contrast (2 parameters, again con-
trolling size and amplitude). Finally, the outputs of each
channel are rectified by a softplus nonlinearity, for a total
of 12 model parameters. In order to evaluate the neces-
sity of each structural element of this model, we also test
three reduced sub-models, each trained on the same data
(Fig. 5).

Finally, we compare both of these models to a version
of VGG16 targeted at image quality assessment (VGG-
IQA). This model computes the weighted mean squared
error over all rectified convolutional layers of the VGG16
network (13 weight parameters in total), with weights
trained on the same perceptual data as the other models.

6



3.1 Optimizing models for IQA

We trained all of the models on the TID-2008 database, which contains a large set of original and
distorted images, along with corresponding human ratings of perceived distortion [Ponomarenko
et al., 2009]. Perceptual distortion distance for each model was calculated as the Euclidean distance
between the model’s representations of the original and distorted images:

Dφ = ||f(~x)− f(~x ′)||2
For each model, we optimized the parameters, φ, so as to maximize the correlation between that
model’s reports of perceptual distance, Dφ and the human mean opinion scores (MOS) reported in
the TID-2008 database.

φ∗ = argmax
φ

(
corr(Dφ,MOS)

)

Optimization of VGG-IQA weights was performed using non-negative least squares. Optimization of
all other models was performed using regularized stochastic gradient ascent with the Adam algorithm
(Kingma and Ba [2015]).

3.2 Comparing perceptual predictions of generic and structured models

IQA Model

ln
 th

re
sh

ol
d

MSE LN LG LGG On-Off CNN VGG
IQA

−4

−3

−2

−1

0

1

2

3

Figure 6: Top: Average log-thresholds for
detection of the least-noticeable (red) and
most-noticeable (blue) eigen-distortions de-
rived from IQA models (19 human observers).

After training, we evaluated each model’s predictive
performance using traditional cross-validation meth-
ods on a held-out test set of the TID-2008 database.
The generic CNN, the structured On-Off model, and
the VGG-IQA model all performed well (Pearson cor-
relation: CNN ρ = .86, On-Off: ρ = .82, VGG-IQA:
ρ = .84).

Stepping beyond the TID-2008 database, and using
the more stringent eigen-distortion test, yielded a
very different outcome (Figs. 7, 6 and 8). All of our
models surpassed the baseline model in at least one
of their predictions, however, the eigen-distortions
derived from the generic CNN and VGG-IQA were
significantly less predictive of human sensitivity than
those derived from the On-Off model (Fig. 6) and,
surprisingly, even somewhat less predictive than early
layers of VGG16 (see Fig. 8). Thus, the eigen-
distortion test reveals generalization failures in the
CNN and VGG16 architectures that are not exposed
by traditional methods of cross-validation. On the other hand, the models with architectures that
mimic biology (On-Off, LGG, LG) are constrained in a way that enables better generalization.

We compared these results to the performance of each of our reduced LGN models (Fig. 5), to
determine the necessity of each structural element of the full model. As expected, the models
incorporating more LGN functional elements performed better on a traditional cross-validation test,
with the most complex of the reduced models (LGG) performing at the same level as On-Off and
the CNN (LN: ρ = .66, LG: ρ = .74, LGG: ρ = .83). Likewise, models with more LGN functional
elements produced eigen-distortions that increased in predictive accuracy (Fig. 6 and 8). It is
worth noting that the three LGN models that incorporate some form of local gain control perform
significantly better than all layers of VGG16, including the early layers (see Fig. 8).

4 Discussion

Analysis-by-synthesis can provide a powerful form of “Turing test”: perceptual measurements on a
limited set of model-optimized examples can reveal failures that might not be apparent in measure-
ments on a large set of hand-curated examples. In this paper, we present a new methodology for
synthesizing best and worst-case predictions from perceptual models, and compare those predictions
to human perception.

We are not the first to introduce a method of this kind. Wang and Simoncelli [2008] introduced
Maximum Differentiation (MAD) competition, which creates images optimized for one metric while

7



Most-noticeable eigen-distortion (4êm)

LG LGG On-Off CNN VGG-IQA

Least-noticeable eigen-distortion (30êl)

LG LGG On-Off CNN VGG-IQA

Figure 7: Eigen-distortions for several models trained to maximize correlation with human distortion
ratings in TID-2008 [Ponomarenko et al., 2009]. Images are best viewed in a display with luminance
range from 5 to 300 cd/m2 and a γ exponent of 2.4. Top: Most-noticeable eigen-distortions. All
distortion image intensities are re-scaled by the same amount (×4). Second row: Original image
(~x), and sum of this image with each eigen-distortion. Third and fourth rows: Same, for the
least-noticeable eigen-distortions. Distortion image intensities re-scaled by the same amount (×30).

holding constant the competing metric’s rating. Our method relies on a Fisher approximation to
generate extremal perturbations, and uses the ratio of their empirically measured discrimination
thresholds as an absolute measure of alignment to human sensitivity (as opposed to relative pairwise
comparisons of model performance). Our method can easily be generalized to incorporate more
physiologically realistic noise assumptions, such as Poisson noise, and could potentially be extended
to include noise at each stage of a hierarchical model.

We’ve used this method to analyze the ability of VGG16, a deep convolutional neural network
trained to recognize objects, to account for human perceptual sensitivity. First, we find that the early
layers of the network are moderately successful in this regard. Second, these layers (Front, Layer
3) surpassed the predictive power of a generic shallow CNN explicitly trained to predict human
perceptual sensitivity, but underperformed models of the LGN trained on the same objective. And
third, perceptual sensitivity predictions synthesized from a layer of VGG16 decline in accuracy for
deeper layers.

We also showed that a highly structured model of the LGN generates predictions that substantially
surpass the predictive power of any individual layer of VGG16, as well as a version of VGG16
trained to fit human sensitivity data (VGG-IQA), or a generic 4-layer CNN trained on the same
data. These failures of both the shallow and deep neural networks were not seen in traditional
cross-validation tests on the human sensitivity data, but were revealed by measuring human sensitivity
to model-synthesized eigen-distortions. Finally, we confirmed that known functional properties

8



ln
 th

re
sh

ol
d 

ra
tio

 (D
(f)

)

0

1

2

3

4

5

6

7

MSE LN LG LGG On-Off CNN VGG
IQAIQA Models

FRONT 2 3 4 5 6
VGG16 Layers

Figure 8: Average empirical log-threshold ratio (D) for eigen-distortions derived from each IQA
optimized model and each layer of VGG16.

of the early visual system (On and Off pathways) and ubiquitous neural computations (local gain
control, Carandini and Heeger [2012]) have a direct impact on perceptual sensitivity, a finding that is
buttressed by several other published results (Malo et al. [2006], Lyu and Simoncelli [2008], Laparra
et al. [2010, 2017], Ballé et al. [2017]).

Most importantly, we demonstrate the utility of prior knowledge in constraining the choice of models.
Although the structured models used components similar to generic CNNs, they had far fewer
layers and their parameterization was highly restricted, thus allowing a far more limited family of
transformations. These structural choices were informed by knowledge of primate visual physiology,
and training on human perceptual data was used to determine parameters of the model that are
either unknown or underconstrained by current experimental knowledge. Our results imply that this
imposed structure serves as a powerful regularizer, enabling these models to generalize much better
than generic unstructured networks.
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