

BLADE: Box-Level Supervised Amodal Segmentation through Directed Expansion

Zhaochen Liu^{1,2}, Zhixuan Li³, Tingting Jiang^{1,4}

¹ National Engineering Research Center of Visual Technology, National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
² Al Innovation Center, School of Computer Science, Peking University
³ School of Computer Science and Engineering, Nanyang Technological University
⁴ National Biomedical Imaging Center, Peking University

FEBRUARY 20-27, 2024 | VANCOUVER, CANADA

Amodal Perception

- Amodal perception is to infer the complete shape of occluded objects.
- A **vital** ability of human's cognitive system.
- Essential potential for tremendous real-world applications (autonomous driving, robotic gripping, novel view synthesis, ...).

Related Work

Direct Optimization

Li et al., 2016, Zhu et al., 2017, Qi et al., 2019,

• • •

Depth Relationships

Zhang et al., 2019,

• • •

Compositional Models

Wang et al., 2020,

• • •

Xiao et al., 2021, Li et al., 2022, . . .

• In computer vision, amodal instance segmentation has aroused **broad** concern since it was proposed, which aims to predict complete shapes of partially occluded objects.

Shape Priors

Correlation

Follmann et al., 2019, Ke et al., 2021,

• • •

Amodal Completion

Ehsani et al., 2018, Dhamo et al., 2019, Ling et al., 2020,

. . .

Challenge

an alternative supervision signal.

• However, annotating pixel-level ground-truth amodal masks for such objects is laborintensive and error-prone due to the absence of visible cues in occluded regions.

• To solve the challenges of pixel-level annotation, Bayesian-Amodal (Sun et al., 2022), a weakly supervised approach is proposed that utilizes ground-truth bounding boxes as

Bayesian-Amodal

 Nevertheless, the amodal mask genera low resolution and uneven boundaries.

Nevertheless, the amodal mask generated by the Bayesian-Amodal approach exhibits

Introduction

- through **box-level supervision**?
- network through **D**irected **E**xpansion, **BLADE**, a weakly-supervised method.

• How to obtain amodal masks with both **high-resolution** and **accurate boundaries** solely

• To deal with this challenge, we propose the **B**ox-Level supervised Amodal segmentation

Method

- An amodal mask \mathbf{M}_a can be decomposed.
- Inspired by this, we design a hybrid structure with multiple branches.

The 38th Annual AAAI Conference on Artificial ntelligence

Method Network Architecture

• The three branches share the same multi-scale features extracted from the image • The three branches all adopt dynamically-generated instance-aware mask heads containing varying instance-by-instance parameters (refer to CondInst, Tian et al., 2020).

Method | Multiple Branch

Visible-Brach

- The original mask heads with projection loss and pairwise loss in BoxInst (Tian et al., 2021) are used.
- \mathbf{B}_{v} (the bounding box of visible portion) annotations are applied as the supervision.
- What about the region-branch?

Amodal-Brach

- We feed it the predicted \mathbf{m}_{v} from visible-branch in addition to the features and relative coordinates.
- **B**_{*a*} (the bounding box of complete object) annotations are applied as the supervision.

Method Overlapping Region

- box of the object and those of other objects.
- The occluded portion of each object should be inside if exists.

• The tightest bounding box that covers all intersecting areas of the amodal bounding

Method Overlapping Region

- If there are multiple intersecting areas, the envelope box is used as the ground-truth overlapping region.
- For the example in the figure, both $\mathbf{B}_{a}^{j_{1}}$ and $\mathbf{B}_{a}^{j_{2}}$ overlaps \mathbf{B}_{a}^{i} , then the red box \mathbf{R}^{i} is defined as the overlapping region of instance *i*.

Method Region-Branch

- The prediction of the four parameters $\mathbf{R}^{i} = (x_{min}^{i}, y_{min}^{i}, x_{max}^{i}, y_{max}^{i})$ -> The prediction of the corresponding **bitmask**
- A simple pixel-level BCE loss
- Better robustness

Method Directed Expansion

• The overall loss function of amodal-branch is

 $L^a = \alpha_1^a L^a_{proj}$

- Utilizing the input \mathbf{m}_{v} as clues, we introduce a **connectivity loss** L_{con} in it.

The 38th Annual AAAI Conference on Artificial

Directed Expansion

$$+ \alpha_2^a L_{pair}^a + \alpha_3^a L_{con}.$$

• L_{con} is to direct the expansion from predicted visible mask \mathbf{m}_v to predicted amodal mask \mathbf{m}_a .

Method Connectivity Loss

• The connectivity loss contains two terms, namely neighbor loss and uniform loss.

$$L_{con} = l_{ne} + l_{un}$$

- l_{ne} : The label consistency of each pixel with its neighbors in \mathbf{m}_{a} .
- l_{un} : The consistency of corresponding pixels between \mathbf{m}_a and \mathbf{m}_v .

Method Connectivity Loss

- l_{ne} is applied to predicted-overlapping-visible pixels (region 1).
- l_{un} is applied to the whole overlapping region **R** (region (1+2)).

Method Neighbor Loss

- Consider an undirected graph $G = (V_{pov}, E_{pov})$.
- V_{pov} : The set of predicted-overlapping-visible pixels satisfies $\forall (i,j) \in V_{pov}, (i,j) \in \mathbf{R} \land \mathbf{m}_v(i,j) > t.$
- E_{pov} : The set of edges that connect each pixel with its **eight** neighbors and contain at least one pixel in V_{pov} .
- *t*: The threshold of the visible-branch.

Method Neighbor Loss

- For an edge $e = ((i_1, j_1), (i_2, j_2)) \in E_{pov}$, the ground-truth consistency value $c_e = 1$ when the labels of its two endpoints are the same while $c_e = 0$ when the labels are different.
- The predicted consistency value \tilde{c}_{ρ} can be defined as

$$\tilde{c}_e = \mathbf{m}_a(i_1, j_1) \cdot \mathbf{m}_a(i_2, j_2) + (1 - \mathbf{m}_a(i_1, j_1)) \cdot (1 - \mathbf{m}_a(i_2, j_2)).$$

• We adopt the BCE loss

$$l_{ne} = -\frac{1}{N_e} \sum_{e \in E_{pov}} c_e \log \tilde{c}_e + (1 - c_e) \log(1 - \tilde{c}_e)$$

edges in E_{pov} .

to minimize the gap between all \tilde{c}_{ρ} and corresponding c_{ρ} , where N_{ρ} is the number of

Method Uniform Loss

- $\mathbf{m}_{a}(i, j)$: The prediction of the probability that pixel (i, j) belongs to the object.
- $\mathbf{m}_{v}(i, j)$: The prediction of the probability that pixel (i, j) belongs to the visible portion of the object.
- Therefore, any $\mathbf{m}_{a}(i, j)$ should NOT be less than $\mathbf{m}_{v}(i, j)$.
- Observing this, the uniform loss is defined as

$$l_{un} = \frac{K}{N_{\mathbf{R}}} \sum_{(i,j)\in\mathbf{R}} m$$

in the overlapping region and $N_{\mathbf{R}}$ is the number of these pixels.

- $\max(\mathbf{m}_{v}(i,j) \mathbf{m}_{a}(i,j),0)$
- to penalize those pixels with reduced values from \mathbf{m}_v to \mathbf{m}_a , where \mathbf{R} is the set of pixels

Method Directed Expansion

- inhibition of expansion thus directing a moderate expansion.

• By introducing the connectivity loss, an active band is built as the initiation of expansion. Multiple losses for the amodal-branch reach a balance of encouragement and

active band

Experiments

- (Follmann et al., 2019).
- **Metric:** Mean intersection-over-union (IoU).
- et al., 2022).

• Baselines: BBTP (Hsu et al., 2019), BoxInst (Tian et al., 2021), and Bayesian-Amodal (Sun

Experiments | Comparison

		OccludedVehicles											
Method	known c	FG-0	FG-1				FG-2		FG-3			Mean	
		-	BG-	-1 B	G-2	BG-3	BG-1	BG-2	BG-3	BG-1	BG-2	BG-3	
BBTP (Hsu et al. 2019)	Yes	66.5	59.'	7 5	8.4	57.9	54.4	51.0	48.9	50.4	44.7	40.2	53.2
BoxInst (Tian et al. 2021)	Yes	72.3	52.	5 5	3.5	53.9	37.7	38.1	38.2	23.0	22.8	23.7	41.6
Bayesian-Amodal (Sun, Kortylewski, and Yuille 2022)	Yes	63.9	59.′	7 5	9.6	59.7 <	57.2	56.8	56.8	55.0	53.9	53.4	57.6
Bayesian-Amodal (Sun, Kortylewski, and Yuille 2022)	No	63.0	59.:	5 5	9.5	59.5	56.2	55.9	55.6	51.9	50.6	48.3	56.0
Ours	No	73.2	70.	5 6	9.7	68.9	69.7	68.1	66.2	68.2	64.5	62.8	68.2
Method	Supervision	known a			.0	KIN	IS			COCOA-cls			
Wichiod	Supervision	KIIOW		FG-0	FG-1	l FG-	-2 FG-3	3 Mean	n FG-0	FG-1	FG-2	FG-3	Mean
SAM (ViT-H) (Kirillov et al. 2023)	-	Yes	s	86.7	75.0	50.	8 39.0	62.9	82.7	74.9	59.2	42.3	64.8
VRSP (Xiao et al. 2021)	fully	-		84.7	75.8	74.	5 67.1	75.5	82.1	77.7	74.5	72.9	76.8
AISFormer (Tran et al. 2022)	fully	-		85.8	76.4	75.	0 69.4	6.7	80.6	76.9	70.9	62.1	72.6
BBTP (Hsu et al. 2019)	weakly	Yes	s	77.0	68.3	58.	9 53.9	64.5	57.3	49.4	40.7	35.0	45.6
BoxInst (Tian et al. 2021)	weakly	Yes	s	82.0	73.3	56.	6 43.6	63.9	76.8	67.0	57.2	34.0	58.8
Bayesian-Amodal (Sun, Kortylewski, and Yuille 2022)	weakly	Yes	s	72.3	69.6	66.	2 58.5	66.7	65.3	65.0	64.3	61.4	64.0
Bayesian-Amodal (Sun, Kortylewski, and Yuille 2022)	weakly	cly No		69.9	68.1	63.	2 47.3	62.1	58.3	59.8	58.6	53.5	57.6
Ours	weakly	No)	81.6	74.5	73.	7 63.6	73.4	80.3	76.5	69.9	57.9	71.2
	N. K	Y JON				4.V.	60,61				Nev	-	

• Our proposed approach outperforms existing weakly-supervised methods with large margins and significantly reduces the performance gap with fully-supervised methods.

Experiments | Comparison

OccludedVehicles

The 38th Annual AAAI Conference on Artificial Intelligence JARY 20-27, 2024 | VANCOUVER, CANAD

KINS

Experiments | Ablation Study

- On the KINS dataset
- UN: The uniform loss NE: The neighbor loss FS: The fusion structure
- Small adjustments of the weights in L^a -> Certain but not dramatic performance changes
- Our currently selected weights

 $\alpha_1^a = 2.0, \alpha_2^a = 1.0, \alpha_3^a = 1.0$ achieve good performance.

	UN	NE	FS	FG-0	0	FG-1	.]	FG-2	FG-3		Mear	
1	\checkmark	\checkmark	\checkmark	81.6	5	74.5		7 3.7	63.6		73.4	
2		\checkmark	\checkmark	81.6		74.9		70.2	57.3		71.0	
3	\checkmark		\checkmark	82.8		73.2		56.8	41.0	6	63.6	
4			\checkmark	82.9		72.8		56.7	40.3		63.2	
5	\checkmark	\checkmark		76.6	5	66.7		63.9	56.2		65.9	
6		\checkmark		77.3		66.9		62.9	53.2		65.1	
7	\checkmark			82.3	3	74.2		60.0	44.′	7	65.3	
8				82.2	2	73.1		56.2	40.0	40.0		
-					3			~ ~				
$lpha_1^a$	$ \alpha_2^a$	$ \alpha_{z}^{\alpha}$	FG-0		FG-1		FG-2		FG-3		Mean	
1.0) 1.0	1.0 1.0		81.3		2.3	69	9.6	62.1		71.3	
2.0) 1.(1.0 1.0		81.6		4.5	73	3.7	63.6		73.4	
1.0) 2.0) 1.	0 8	2.0	7	3.4	72	2.7	64.8		73.2	
1.0) 1.0	0 2.	0 7	9.9	7	1.6	68	3.3	60.1		70.0	
			-					- 20	15.75			

Summary

- **Problem:** Box-level supervised amodal segmentation
- Key Idea: Directed expansion
 - A structure of multi-branch fusion based on the overlapping region
 - Conservative strategy and expansion-encouraged strategy
 - A connectivity loss for reasonable expansion
- **Results:** Our method significantly outperforms current methods

Thanks!

BLADE: Box-Level Supervised Amodal Segmentation through Directed Expansion

Zhaochen Liu, Zhixuan Li, Tingting Jiang {dreamerliu, ttjiang}@pku.edu.cn, zhixuanli520@gmail.com

FEBRUARY 20-27, 2024 | VANCOUVER, CANADA

ıl