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BLADE: 

Box-Level Supervised Amodal Segmentation 

through Directed Expansion



Amodal Perception

• Amodal perception is to infer the complete shape of occluded objects.

• A vital ability of human's cognitive system. 

• Essential potential for tremendous real-world applications (autonomous driving, robotic 

gripping, novel view synthesis, …).
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Related Work

• In computer vision, amodal instance segmentation has aroused broad concern since it 
was proposed, which aims to predict complete shapes of partially occluded objects.
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Direct Optimization
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Challenge

• However, annotating pixel-level ground-truth amodal masks for such objects is labor-
intensive and error-prone due to the absence of visible cues in occluded regions.
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• To solve the challenges of pixel-level annotation, Bayesian-Amodal (Sun et al., 2022), a 
weakly supervised approach is proposed that utilizes ground-truth bounding boxes as 
an alternative supervision signal. 



Bayesian-Amodal

• Nevertheless, the amodal mask generated by the Bayesian-Amodal approach exhibits 
low resolution and uneven boundaries.
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Introduction

• How to obtain amodal masks with both high-resolution and accurate boundaries solely 
through box-level supervision?


• To deal with this challenge, we propose the Box-Level supervised Amodal segmentation 
network through Directed Expansion, BLADE  , a weakly-supervised method.
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Method BLADE

• An amodal mask  can be decomposed.

• Inspired by this, we design a hybrid structure with multiple branches.
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Method｜Network Architecture BLADE

• The three branches share the same multi-scale features extracted from the image

• The three branches all adopt dynamically-generated instance-aware mask heads 

containing varying instance-by-instance parameters (refer to CondInst, Tian et al., 2020).

m = ma ⋅ mr + mv ⋅ m̄r



Method｜Multiple Branch BLADE

Visible-Brach


• The original mask heads with projection loss and pairwise 
loss in BoxInst (Tian et al., 2021) are used.


•  (the bounding box of visible portion) annotations are 
applied as the supervision.
Bv

Predicted mv

Amodal-Brach


• We feed it the predicted  from visible-branch in 
addition to the features and relative coordinates.


•  (the bounding box of complete object) annotations 
are applied as the supervision.

mv

Ba

• What about the region-branch?



Method｜Overlapping Region BLADE

• The tightest bounding box that covers all intersecting areas of the amodal bounding 
box of the object and those of other objects.


• The occluded portion of each object should be inside if exists.



Method｜Overlapping Region BLADE

• If there are multiple intersecting areas, 
the envelope box is used as the 
ground-truth overlapping region. 


• For the example in the figure, both  
and  overlaps , then the red box 

 is defined as the overlapping 
region of instance .
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BLADEMethod｜ Region-Branch

• The prediction of the four parameters  

-> The prediction of the corresponding bitmask 


• A simple pixel-level BCE loss

• Better robustness

Ri = (xi
min, yi

min, xi
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BLADEMethod｜Directed Expansion

• The overall loss function of amodal-branch is

.


• Utilizing the input  as clues, we introduce a connectivity loss  in it.


•  is to direct the expansion from predicted visible mask  to predicted amodal mask .

La = αa
1 La

proj + αa
2 La

pair + αa
3 Lcon
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BLADEMethod｜Connectivity Loss
• The connectivity loss contains two 

terms, namely neighbor loss and 
uniform loss. 





• : The label consistency of each pixel 
with its neighbors in .


• : The consistency of corresponding 
pixels between  and .

Lcon = lne + lun

lne
ma

lun
ma mv



BLADEMethod｜Connectivity Loss

•  is applied to predicted-overlapping-visible pixels (region ①).


•  is applied to the whole overlapping region  (region ①+②).

lne

lun R



BLADEMethod｜Neighbor Loss

• Consider an undirected graph . 


• : The set of predicted-overlapping-visible pixels satisfies 


.


• : The set of edges that connect each pixel with its eight neighbors and contain at 
least one pixel in .


• : The threshold of the visible-branch.

G = (Vpov, Epov)

Vpov

∀(i, j) ∈ Vpov, (i, j) ∈ R ∧ mv(i, j) > t

Epov
Vpov

t



BLADEMethod｜Neighbor Loss

• For an edge , the ground-truth consistency value  when 
the labels of its two endpoints are the same while  when the labels are different.


• The predicted consistency value  can be defined as


.

• We adopt the BCE loss





to minimize the gap between all  and corresponding , where  is the number of 
edges in .

e = ((i1, j1), (i2, j2)) ∈ Epov ce = 1
ce = 0

c̃e

c̃e = ma(i1, j1) ⋅ ma(i2, j2) + (1 − ma(i1, j1)) ⋅ (1 − ma(i2, j2))

lne = −
1
Ne ∑

e∈Epov

ce log c̃e + (1 − ce)log(1 − c̃e)

c̃e ce Ne
Epov



BLADEMethod｜Uniform Loss

• : The prediction of the probability that pixel  belongs to the object.


• : The prediction of the probability that pixel  belongs to the visible portion 
of the object. 


• Therefore, any  should NOT be less than .

• Observing this, the uniform loss is defined as





to penalize those pixels with reduced values from  to , where  is the set of pixels 
in the overlapping region and  is the number of these pixels.

ma(i, j) (i, j)
mv(i, j) (i, j)

ma(i, j) mv(i, j)

lun =
K
NR ∑

(i,j)∈R

max(mv(i, j) − ma(i, j),0)

mv ma R
NR



BLADEMethod｜Directed Expansion
• By introducing the connectivity loss, an active band is built as the initiation of expansion. 

• Multiple losses for the amodal-branch reach a balance of encouragement and 

inhibition of expansion thus directing a moderate expansion.



BLADEExperiments

• Datasets: OccludedVehicles (Wang et al., 2020), KINS (Qi et al., 2019) and COCOA-cls 
(Follmann et al., 2019). 


• Metric: Mean intersection-over-union (IoU).

• Baselines: BBTP (Hsu et al., 2019), BoxInst (Tian et al., 2021), and Bayesian-Amodal (Sun 

et al., 2022). 



BLADEExperiments｜Comparison
• Our proposed approach outperforms existing weakly-supervised methods with large 

margins and significantly reduces the performance gap with fully-supervised methods.



BLADEExperiments｜Comparison



BLADEExperiments｜Ablation Study
• On the KINS dataset

• UN: The uniform loss


NE: The neighbor loss

FS: The fusion structure


• Small adjustments of the weights in  

-> Certain but not dramatic performance changes


• Our currently selected weights  

 


achieve good performance.

La
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3 = 1.0



BLADESummary

• Problem: Box-level supervised amodal segmentation

• Key Idea: Directed expansion


- A structure of multi-branch fusion based on the overlapping region

- Conservative strategy and expansion-encouraged strategy

- A connectivity loss for reasonable expansion


• Results: Our method significantly outperforms current methods
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